111. On Certain Triangulated Manifolds

By Masahisa Adachi

Mathematical Institute, Nagoya University (Comm. by K. Kunugi, M.J.A., Oct. 12, 1960)

V. Rohlin and A. Schwarz [5] and R. Thom [7] defined the combinatorial Pontrjagin classes of triangulated manifolds and proved the existence of triangulated 8-dimensional manifolds which admit no differentiable structures compatible with their given triangulations. A corresponding result for triangulated 16-dimensional manifolds was proved by K. Srinivasacharyulu [6]. The purpose of this note is to prove the corresponding theorems for the dimensions of the form 4k ($2 \le k \le 14$, $k \ne 3$).

In §1 certain triangulated 4k-dimensional manifolds are constructed and studied. In §2 the theorem is proved.

Our method is quite analogous to that of R. Thom, and closely related with J. Milnor [4]. The word n-manifold will always be used for a compact oriented n-dimensional manifold without boundary. The word "differentiable" will be used to mean "differentiable of class C^{∞} ".

1. Let us consider two differentiable mappings of spheres into rotation groups:

$$f_1: S^m \to SO(n+1), \quad f_2: S^n \to SO(m+1).$$

For these mappings Milnor [4] defined the differentiable (m+n+1)-manifold $M(f_1, f_2)$ with the following properties:

- i) If the mapping f_1 carries S^m into the subgroup $SO(n) \subset SO(n+1)$, then $M(f_1, f_2)$ is a topological sphere.
- ii) There exists a differentiable bounded manifold²⁾ W whose boundary is $M(f_1, f_2)$.

Hereafter we assume that

(*) if m=n, the mappings f_1, f_2 both carry S^m into the subgroup $SO(m) \subset SO(m+1)$.

Then $M(f_1, f_2)$ is always a topological (m+n+1)-sphere.³⁾ Furthermore, the differentiable (m+n+1)-manifold $M(f_1, f_2)$ has a C^{∞} -triangulation (L, g), and this C^{∞} -triangulation can be extended to a C^{∞} -triangulation (K, f) of the differentiable (m+n+2)-manifolds W. Then L is a combinatorial manifold and K is a combinatorial bounded manifold whose boundary is L (cf. Whitehead [8], Milnor [2]).

¹⁾ For the precise definition, see Whitehead [8], Milnor [2].

²⁾ bounded manifold=variété à bord.

³⁾ Cf. Milnor [4].