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Introduction. In their paper 1, R. Bellman and K. L. Cooke
have defined a kernel function K(t, s) which has been used to obtain
several theorems concerning the stability and boundedness of solutions
of difference-differential equations with perturbed terms.

In the present paper, we shall establish some theorems on the
boundedness of solutions of difference-differential equations which are,
in general, not linear.

1o For the sake of simplicity, we consider an equation
(1.1) x’(t)--A(t)x(t)+B(t)x(t--1)+w(t) (O_t<)
under the conditions
(1.2) x(t--1)=(t) (0t<l) and x(O)-xo.

It is supposed that A(t), B(t), and w(t) are continuous for 0t< ,
(f(t) is continuous for 0t<l, and lim,_0(f(t)=(1--0) exists. Then,
it is well known that there exists a unique solution of (1.1) under the
initial conditions (1.2) for 0t< .

Now, we define a transformation

(1.3) y(t)- !x(t)-(t+l) (-lt0),
 x(t)-Xo (0 t<

Then, by (1.3), (1.1) is reduced to the equation with respect to y,
that is,
(1.4) y’(t)--A(t)y(t)+B(t)y(t--1)+w(t)
under the condition y(t--1)--0 (0tl), where w(t) is as follows:

IxoA(t)+B(t)(f(t)+w(t) (0t< 1),w(t)--
(xoA(t)+xoB(t)--w(t) (lt< ).

By using the same kernel function K(t, s) as defined in _1, the
unique solution y-y(t) of (1.4) under the condition y(t --1) 0 on
0tl is represented by the integral

(1.g) (t)- K(t, )w()d (O<___t oo).

hus, it follows from (1.8) that

(1.6) x(t)--Xo+ K(t, s)w(s)ds (Ot< ).

1) The method to obtain (1.5) is just the same as in [1].


