143. Note on H-spaces

By Masahiro SUGAWARA

Institute of Mathematics, Yoshida College, Kyoto University (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

1. Let G be a topological group and also a CW-complex (where the connectedness is not assumed), and $p: E \rightarrow B$ be a universal bundle with group G, where "universal" means that all the homotopy groups of E vanish. (The existence of a universal bundle is proved by Milnor [1].) Let ΩB be a loop space in B with base point *=p(G) and 0_* the constant loop.

The following theorem is due to Samelson [4], essentially.

Theorem 1. There is an H-homomorphism $f: G \rightarrow \Omega B$, $f(e)=0_*$ (e the unit of G), which is also a weak homotopy equivalence.

Here, "H-homomorphism" means that the two maps

 $(x, y) \rightarrow f(xy)$ and $(x, y) \rightarrow f(x) \circ f(y)$,

of $(G \times G, (e, e))$ into $(\Omega B, 0_*)$, are homotopic; and "weak homotopy equivalence" means that f induces isomorphisms of all the homotopy groups of G and ΩB , i.e., more precisely speaking,

(a) $f_*: \pi_0(G) \to \pi_0(\Omega B)$ is 1-1 and onto, and

(b) $(f | C(G, x))_*: \pi_i(C(G, x)) \to \pi_i(C(\Omega B, f(x)))$ is an isomorphism for any $x \in G$ and positive integer *i*, where C(X, x) is the arcwise-connected component of X containing $x \in X$.

Proof. Because G is a CW-complex and $\pi_i(E)=0$ for $i\geq 0$, G is contractible in E to e, leaving e fixed. Denote such a contraction by

 $k_t: G \rightarrow E, 0 \leq t \leq 1: k_0 = \text{identity}, k_1(G) = k_t(e) = e.$

The map $f: G \rightarrow \Omega B$ is defined by

$$f(x)(t) = p \circ k_t(x), \text{ for } x \in G.$$

By the same proof of [4, Theorem I], it is proved that f is an H-homomorphism, noticing that $G \times G$ has the same homotopy type of a *CW*-complex [2, Proposition 3], and a map of a *CW*-complex into E is homotopic to the constant map.

Consider the diagram

$$\begin{array}{c} \pi_i(E, G, e) \xrightarrow{\partial} \pi_{i-1}(G, e) \\ \downarrow p_* & \downarrow f_* \\ \pi_i(B, *) & \xrightarrow{T} \pi_{i-1}(\Omega B, 0_*) \end{array}$$

where T is the natural isomorphism. p_* , T and ∂ are isomorphisms for $i \ge 2$ and 1-1, onto for i=1.

For a map $h: (I^{i-1}, \dot{I}^{i-1}) \rightarrow (G, e)$, define $\bar{h}: (I^i, \dot{I}^i, J^{i-1}) \rightarrow (E, G, e)$ by $\bar{h}(s, t) = k_t \circ h(s)$ for $(s, t) \in I^{i-1} \times I$. Then