133. General Analyses of the Forced Oscillations in a Waveguide and in a Cavity

By Yoshio HAYASHI

Department of Mathematics, College of Science and Engineering, Nihon University (Comm. by K. KUNUG, M.J.A., Nov. 12, 1960)

The electromagnetic fields E and H in a homogeneous and isotropic medium with medium constants ε , μ and σ , satisfy the equations (1) $\mathit{\Gamma} \times \mathit{\mathbf{E}} = -\mathit{i}\omega\mu\bm{H}-\bm{k}_{_{H}}, \;\;\mathit{\Gamma} \times \mathit{\mathbf{H}} = (\sigma + \mathit{i}\omega\epsilon)\mathit{\mathbf{E}}+\bm{k}_{_{E}}$ when known distributions of densities of electromagnetic currents k_E and k_H are given. In the other paper,¹¹ the author has shown that the fields in anisotropic inhomogeneous medium, when discussed along the line of the theory of perturbation, satisfy the same equations as (1), in which k_E and k_H have been the perturbed terms. Therefore the analysis of (1) is not only interesting in itself but useful for studies of the fields in anisotropic inhomogeneous medium.

1. Suppose that i_z is the unit vector along z-axis, and that $E=E_i+i_zE_z$, $H=H_i+i_zH_z$, $k_x=k_{Et}+i_zk_{Ez}$, $k_{H}=k_{Ht}+i_zk_{Hz}$ and $V=V_t$ $+i_{i} \partial/\partial z$, then (1) will be reduced to
(2) $\partial E_{t}/\partial z = \nabla_{t} E_{z} + i\omega\mu i_{z} \times H_{t} + i_{z} \times k_{Ht}$, $i\omega\mu H_{z} = \nabla_{t} \cdot [\mathbf{i}_{z} \times E_{t}] - k_{Hz}$

$$
\partial \boldsymbol{H}_t/\partial z\!=\!\mathbf{\nabla}_t H_z\!-\!(\sigma\!+\!i\omega\epsilon)\boldsymbol{i}_z\!\times\!\boldsymbol{E}_t\!-\!\boldsymbol{i}_z\!\times\!\boldsymbol{k}_{\scriptscriptstyle{Et}},~(\sigma\!+\!i\omega\epsilon)\boldsymbol{E}_z\!=\!-\mathbf{\nabla}_t\!\cdot\!\left[\boldsymbol{i}_z\!\times\!\boldsymbol{H}_t\right]\!-\!\boldsymbol{k}_{\scriptscriptstyle{Ez}}
$$

To begin with, we shall consider about the fields in a waveguide, the axis of which is parallel to z axis. Let $\mathfrak k$ be the two sided Laplace transformation defined as $\mathcal{R}\lbrace F(z)\rbrace = F(s) = s \int_{-\infty}^{\infty} e^{-sz} F(z) dz$. Applying \mathcal{R} to

(2), we shall have, after some calculations,

$$
(3) \qquad k^2 E_t = s \mathcal{F}_t E_z + i \omega \mu \mathbf{i}_z \times \mathcal{F}_t H_z + i \omega \mu \mathbf{k}_{Et} + s \mathbf{i}_z \times \mathbf{k}_{Ht}
$$

$$
\mathbf{F}^{\bullet}{}' = k^2 \mathbf{H}_t \mathbf{F}_t \mathbf{H}_t - (\sigma + i \omega \varepsilon) \mathbf{i}_z \times \mathbf{F}_t \mathbf{E}_z + (\sigma + i \omega \varepsilon) \mathbf{k}_{Ht} - s \mathbf{i}_z \times \mathbf{k}_{Ht}
$$

(4) $A_tE_z + k^2E_z = g_E, \quad A_tH_z + k^2H_z = g_H,$

where $\kappa^2 = -i\omega\mu(\sigma + i\omega\varepsilon)$, $k^2 = \kappa^2 + s^2$, $A_t = \nabla_t \cdot \nabla_t$ and $g_E = -s\nabla_t \cdot \mathbf{k}_{E_t}/(\sigma + i\omega\varepsilon)$
 $-\nabla_t \cdot \nabla_t \cdot \mathbf{k}_{H_t}/-\kappa^2 k_{E_z}/(\sigma + i\omega\varepsilon)$, $g_H = -s\nabla_t \cdot \mathbf{k}_{H_t}/i\omega\mu + \nabla_t \cdot \left[\mathbf{i}_z \times \mathbf{k}_{E_t}\right] - k^2 k_{H_z}/i\omega\mu$. Conversely, assume that E_z and H_z satisfy (4), and that E_t and H_t be defined by the right hand sides of (3) with the solutions E_z and H_z of (4), then it is easy to see that these values of E and H satisfy (2) , that is (1) . Therefore (1) is equivalent to (3) and (4) .

Next we shall consider the fields in a cavity. Here a cavity means a finite domain which is enclosed by a waveguide and two planes of conductor perpendicular to the axis of the waveguide. Let these planes be $z=0$ and $z=L$. Suppose that the finite Fourier sine and cosine transformations of $\theta(z)$, which is a function defined in