7. On Transformation of the Seifert Invariants

By Joseph WEIER

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1961)

The theory of continuous transformations of manifolds shows preference to the case that $\dim X = \dim Y$ or $\dim X > \dim Y$ where X is mapped into Y. The reason is that every continuous mapping of an m-sphere into an n-sphere with m < n is homotopic to zero. We will cast a look on the case $\dim X < \dim Y$.

1. Suppose z, z' are two disjoint zero-divisors in the compact manifold X such that $\dim z + \dim z' \ge (\dim X) - 1$. Then the pair (z, z') determines [1] a rational interlacing cycle, $\sigma(z, z')$, as follows. Let a, b be the smallest positive integers satisfying $az \sim 0$ and $bz' \sim 0$, and let A, B be two finite integral chains in X such that $\partial A = az$ and $\partial B = bz'$. Then, if f denotes the usual intersection function,

$$\frac{1}{a}f(A,z') = \frac{1}{ab}f(A,\partial B) = \pm \frac{1}{ab}f(\partial A,B) = \pm \frac{1}{ab}f(az,B) = \pm \frac{1}{b}f(z,B).$$

One thus obtains an expression that does not depend on A. Now

$$\sigma(z,z') = \frac{1}{a} f(A,z')$$

is Seifert's interlacing cycle.

2. Let $2 \le m < n$ be integers, let M be an m-dimensional and N an n-dimensional oriented differentiable compact manifold, moreover $f: M \to N$ a continuous mapping. Let P, Q, R, S be pairwise disjoint oriented differentiable compact manifolds in N such that

$$p \ge n-m$$
, $q \ge n-m$, $r \ge n-m$, $s \ge n-m$, $p+q+r+s=4n-m-3$, $p+q \ge 2n-m$,

where p, q, r, s are the dimensions of P, Q, R, S respectively. For instance setting

$$p=q=r=n-1$$
 and $s=n-m$,

one confirms at once that the above dimensional suppositions are fulfilled.

The algebraic inverse of P, Q, R, S under f, defined for instance in [4], will be denoted by z_P , z_Q , z_R , z_S respectively. Geometrically one can suppose [5] that the inverses of P, Q, R, S are differentiable manifolds. Then z_P , z_Q , z_R , z_S is an integral cycle of dimension p-(n-m), q-(n-m), r-(n-m), and s-(n-m) respectively. Let the manifolds P, Q, R, S be defined in such a way that z_P , z_Q , z_R , z_S are zero-divisors. That is always possible as one easily confirms. Let z_T denote the above defined Seifert interlacing cycle, $\sigma(z_P, z_Q)$. By

$$\dim z_r = (\dim z_P) + 1 + \dim z_Q - \dim M$$

$$= (p - n + m) + 1 + (q - n + m) - m = p + q - 2n + m + 1$$