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We shall continue the study of the properties of the classes &’
in section 3 and prove the main theorem 6 in section 4.

3. THEOREM 3. Let (G,), be a subdomain of G, and a<<a,<b,<b
and let Te®D'(G,,,) (+o0=8>—c). Then the restriction (T), of
T on (Go)i(=(G.)oX (au, br)) belongs to GD'[(G,..)].

ProoF. The proof follows immediately from the definitions of
the classes G}, so we omit the proof of Theorem 3.

THEOREM 4. Let (G.,), be a domain in R™ such that (G,), =G,
and (G,), 18 compact. Also let —oo<a<a,<by<b<+oo. If Ted
(G,..), then there is am integer s such that the restriction (T)o of
T on (Gri)(=(G.)o X (ag, by)) belongs to ED'[(G,.1).].

ProOF. By the local structure theorem of distributions,” we can
find a complex-valued function F,eC°[(G,,.),] such that (T),=D?D:F,
s’ an integer=0. By Lemma 2, F, regarded as a distribution belongs
to GXD'[(G,,1)o]. Hence by (2.6) in Theorem 2 and by Theorem 1, we
have (T)eGV[(G,iie] — s=—¢. QE.D.

THEOREM 5. Let Te¥'(G,,,). Assume that each point (%o, t,) of

G,.. has a mneighbourhood (G,.)), of the form (G,),X(ayb,) where
— 0 <Za=ay<h=b=+0o and (G,), 18 ¢ subdomain of G, such that
the restriction (T), of T on (G,,y), belongs to GD'[(G,.,),] where s
(— o0 <8<+ ) 1is the same for all points (&, t)€G,,,. Then TeE:D’
G..).
( lI)’ROOF. For + c0>s8>0, the proof of Theorem 5 is immediate
if a suitable partition of the unity® on G,,,, the univalency of the
mapping M~! and the compactness of the carriers of the test functions
¢ for the distribution T are used. Hence we omit the proof for the
case.

For —oo<s8<0, we proceed as follows. For Te¥'(G,,,), there
exists always a distribution T,e¢®'(G,,,) such that T=D;*T,» Then

1) Cf. L. Schwartz [2], p. 83.

2) Cf. L. Schwartz [2], p. 23.
8) Cf. L. Schwartz [2], p. 656. The same remark as in 7) applies here also.




