By Tôru SAITÔ Tokyo Gakugei University (Comm. by K. SHODA, M.J.A., Feb. 13, 1961)

Following Beaumont [1], an additive abelian group R, closed with respect to multiplication, is called an (m, n)-distributive ring if the (m, n)-distributive law holds in R:

(1) $(\sum_{i=1}^{m} a_i)(\sum_{j=1}^{n} b_j) = \sum_{i,j=1}^{m,n} a_i b_j$ for all $a_i, b_j \in \mathbb{R}$.

In other words, an (m, n)-distributive ring is a system arising from the definition of a (not necessarily associative) ring by replacing two distributive laws by the above (m, n)-distributive law. The structure of (m, n)-distributive rings was studied by Beaumont [1], Hsiang [2] and Saitô [3].

An (m, n)-distributive ring D is called an (m, n)-distributive division ring if D has at least two elements and $D-\{0\}$ forms a multiplicative group. In this note, we study the connection between (m, n)-distributive division rings and (ordinary) division rings.

We consider exclusively (m, n)-distributive rings for $m, n \ge 2$. So, in this paper, we assume that m and n are always integers ≥ 2 .

Theorem 1. If an (m, n)-distributive division ring D contains at least three elements, then D is a division ring.

Proof. Recall, in an (m, n)-distributive ring, we have

(2) (a+b)c=ac+bc-0c, c(a+b)=ca+cb-c0([1], p. 877). By assumption, for any $x \in D^*=D-\{0\}$, we can take an element $y \in D^*$ such that $y \neq x$. We set $z=yx^{-1}$. Then $z-1 \in D^*$. Now, by the equality (2) and the associativity of multiplication in D^* , we have

> $yx^{-1} + (0x)x^{-1} - 0x^{-1} = (y+0x)x^{-1} = (zx+0x)x^{-1}$ = (((z-1)+1)x+0x)x^{-1} = ((z-1)x+1x-0x+0x)x^{-1} = ((z-1)x+x)x^{-1} = (z-1)xx^{-1}+xx^{-1}-0x^{-1} = (z-1)+1-0x^{-1}=yx^{-1}-0x^{-1}.

Hence $(0x)x^{-1}=0$. By the closedness of multiplication in D^* , we have 0x=0. Dually x0=0. Moreover, since

$$0=0z=0((z-1)+1)=0(z-1)+01-00=0-00,$$

we have 00=0. Thus

$$0x = x0 = 0$$
 for all $x \in D$.

Hence, by (2), we have distributive laws:

(a+b)c=ac+bc, c(a+b)=ca+cb.

This completes the proof.