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44. On Metric General Connections

By Tominosuke OTSUKI
Tokyo Institute of Technology, Tokyo
(Comm. by Z. SUETUNA, M.J.A., April 12, 1961)

In this note, the author will show that the Levi-Civita’s connec-
tions of Riemann spaces can be generalized in the theory of general
connections under some conditions on an nm-dimensional differentiable
manifold X. He will use the notations in [3].

1. A tensor P of type (1,1) is called normal when P as a homo-
morphism of the tangent bundle 7'(X) of X is an isomorphism on each
P(T (X))=P.(X), zcX, and dim P_(X) is constant. Let us assume that
P is normal and put dim P (X)=m. If we put N_.(X)=the kernel of
P on T,.(X), then we have

T(%)=P(¥)+ N, (X).
According to the direct sum decomposition of T'(X), we define two pro-
jections A and N which map T.(X) onto P,(X) and N,(X) respectively
at each point £ of X. A and N may be considered as tensors of type
(1,1) of X. Clearly we have A+N=1I, A=A, N2=N, AN=NA=0,
AP=PA=P and NP=PN=0, where I denotes the fundamental unit
tensor of type (1, 1).

Now, we say that a normal tensor P is orthogonally related with
a non-singular symmetric tensor G=g, du‘®dw’, if P,(¥) and N,(¥)
are mutually orthogonal with respect to G, regarding G as a metric
tensor.

A general connection I", which is locally written as

I' =0u,Q (Pjd*w!+I'} duw’ @du™),’ ou,=ad/ou’,
is called mormal, if the tensor P=2A(I")” =0u,® Pjdu’ is normal.

A normal general connection I" is called proper® if the tensor
of type (1,2) with local components NiI'} vanishes, where Nj are the
local components of the tensor N.

We say that a general connection I" satisfies the metric condition
for a symmetric covariant tensor G=g, du'®du’, if
(1) DG=g,; ,du’ @ du’ @du*=0,
where DG denotes the covariant differential of G with respect to I'.*
On the metric condition, the following theorem holds good as in the

1) See [8].
2) See [3], §2.
3) On the geometrical meaning of this condition, see Theorem 5.2 of [4]. In

general, I” },, are not local components of a tensor of type (1,3) as the classical affine

connections but NiI'} are so.

4) See (2.15) of [3].




