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(Comm. by K. KUNU(I, M.J..., June 12, 1961)

The object of the present note is to generalize the Heinz in-
equality for selfadjoint operators to a wider class of accretive opera-
tors.

A linear operator A in a Hilbert space is said to be accretive1

if Re (Au, u)>_O for all ue.A] (.[A] is the domain of A). If A is
closed and maximal accretive, then A is densely defined, and the
fractional powers A are defined for 0_<h_<l and are again closed
and maximal accretive.2,

Our main result is given by
Theorem 1. Let A, B be closed, maximal accretive operators

in Hilbert spaces , ’, respectively, and let T be a bounded linear
operator3) from to ’. 1.f T[A]c[B] and
( 1 ) II BTu II<MII Au II,
with a constant M, then we have T3[A])[B] and

where N=II TII, O<h<l and c is an absolute constant. We can take
c--O if A, B are selfadjoint and nonnegative. In general we can
take c--/2, but we do not know whether this is the optimal value.

Remark. The value of c can be improved if A, B are themselves
fractional powers of accretive operators. Suppose that there are
closed, maximal accretive operators A, B in 29, Sp’, respectively,
such that A=AI, B-- B; for some s, t, 0< s_< 1, 0< t_< 1. Then we can
set c=r(s+t)/4. (The proof is not essentially different from the
proof of Theorem 1 given below.) If, for example, A is nonnegative
selfadjoint, we can make s-->0 and set c--=t/4.

Corollary. If A, B are closed, maximal accretive operators in
such that .[A] Z)[B] and [I Bu 1[_1] Au I1 for u[A], then

,[A’J C:[B’q and ]1Bau ]1<-- e"‘-n, II Aau [I for ue[A], O_<h_<l.
Theorem 1 is equivalent to
Theorem 2. Let A, B be as in Theorem 1, and let Q be a densely

1) Then --A is said to be dissipative. For the term "accretive", see K. O.
Friedrichs: Symmetric positive linear differential equations, Comm. Pure Appl. Math.,
11, 333-418 (1958).

2) See T. Kato: Fractional powers of dissipative operators, J. Math. Soc. Japan,
13 (1961), in press. This paper will be quoted as (F) in the following.

3) A bounded linear operator is assumed to be defined everywhere in the domain
space, unless otherwise stated explicitly.


