11. On the Weak Definability in Set Theory

By Gaisi TAKEUTI

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by Z. SUETUNA, M.J.A., Feb. 12, 1962)

We refer to $\lceil 4 \rceil$ and $\lceil 5 \rceil$ as to the notions and notations throughout this paper. Here we restate some of them. A "set theory" means a set theory in the first order predicate calculus, containing only the predicate ϵ , logical symbols, bound variables and finitely or infinitely many individual constants. If T is a set theory in this sense containing a_0, a_1, \cdots as individual constants, we call T a set theory with a_0, a_1, \cdots . Let T be a set theory with a_0, a_1, \cdots and B_T be the class consisting of all $\{x\}\mathfrak{A}(x, a_0, a_1, \cdots)$, where $\{x\}\mathfrak{A}(x, a_0, a_1, \cdots)$ contains only logical symbols, the predicate ϵ , bound variables and a_0, a_1, \cdots $\{x\}\mathfrak{A}(x, a_0, a_1, \cdots)$ will be abbreviated as $\{x\}\mathfrak{A}(x)$ if no confusion is to be feared. T is called 'definite', if it satisfies the following conditions: 1) T is complete. (I.e. for any closed formula \mathfrak{A} (which, more precisely, should be written as $\mathfrak{A}(a_0, a_1, \cdots)$) either \mathfrak{A} or $\mathcal{I}\mathfrak{A}$ belongs to T.) 2) If $\exists x\mathfrak{A}(x)$ belongs to T, then there exists a formula $\exists x \mathfrak{B}(x)$ such that $\forall x \forall y (\mathfrak{B}(x) \land \mathfrak{B}(y) | -x = y)$ and $\exists x (\mathfrak{A}(x) \land \mathfrak{B}(x))$ belong to T.

Let $\{x\}\mathfrak{A}(x)$ and $\{x\}\mathfrak{B}(x)$ belong to B_T . We say ' $\{x\}\mathfrak{B}(x)$ belongs to the same class with $\{x\}\mathfrak{A}(x)$ relative to T', if and only if $Vx(\mathfrak{A}(x) | - | \mathfrak{B}(x))$ belongs to T. The class which contains $\{x\}\mathfrak{A}(x)$ is written $(\{x\}\mathfrak{A}(x))$ and $\{x\}\mathfrak{A}(x)$ is said to represent the class. A class $(\{x\}\mathfrak{A}(x))$ is said to be definite with respect to T, if $\mathfrak{A}x\mathfrak{A}(x)$ and $VxVy(\mathfrak{A}(x)\wedge\mathfrak{A}(y)|-x=y)$ belong to T. A(T) is defined to be the set of all the definite classes. Let $(\{x\}\mathfrak{A}(x))$ and $(\{x\}\mathfrak{B}(x))$ be two elements of A(T). Then

$$({x}\mathfrak{A}(x)) \in {}^{*}_{T}({x}\mathfrak{B}(x))$$

is defined to mean that $Ax \exists y(\mathfrak{A}(x) \land \mathfrak{B}(y) \land x \in y)$ belongs to T'.

In [5] we considered a set theory $T_c(a)$. It contains all the elements of a set a in C (='Cantor's Absolute') as individual constants, and consists of all the formulas which are true in C. Here we consider the set theory $T_c(On)$ which contains all ordinal numbers as individual constants.

A set in C is called *weakly definable* (or a weakly definable set) if it is definable in $T_c(On)$.

We present the following two statements as the first and the second weak definability principles:

- 1. Every set is weakly definable.
- 2. Every non-empty weakly definable set contains a weakly