No. 5]

40. 2-Primary Components of the Homotopy Groups of Spheres

By Kunio OGUCHI

Department of Mathematics, International Christian University, Tokyo (Comm. by Z. SUETUNA, M.J.A., May 12, 1962)

This is a preliminary report of results concerning the generators of 2-primary components of the homotopy groups of spheres. The proofs will be given elsewhere.

1. Let $E: \pi_m(S^n) \to \pi_{m+1}(S^{n+1})$ be the suspension homomorphism. If α_n is an essential element of $\pi_m(S^n)$, we shall denote $E\alpha_n$ by α_{n+1} . The homotopy class of the identity map $S^n \to S^n$ is denoted by ϵ_n . Let $\alpha \in \pi_p(S^n)$, $\beta \in \pi_q(S^n)$. Suppose that there exists a map $h: S^p \times S^q \to S^n$ of type (α, β) , then we denote by (α, β) the coset of the subgroup $E\pi_{p+q}(S^n)$ of $\pi_{p+q+1}(S^{n+1})$ which includes the homotopy class of the map obtained by Hopf construction from n. The triad Whitehead product of α and β will be denoted by $\{\alpha, \beta\} \in \pi_{p+q+1}(S^{n+1}; E_+, E_-)$ ([4] or [5]). Define a homomorphism $P: \pi_m(S^n) \to \pi_{m+n+1}(S^{n+1}; E_+, E_-)$ by $P(\alpha) = \{\alpha, \epsilon_n\}$ for $\alpha \in \pi_m(S^n)$ $(n \ge 2)$.

We use the notation R_n instead of SO(n). G. W. Whitehead defined a homomorphism $J: \pi_m(R_n) \to \pi_{m+n}(S^n)$ ([6]). We can prove (1.1) $J(\alpha \circ \beta) = J(\alpha) \circ E^n \beta$ for $\beta \in \pi_p(S^m)$, $\alpha \in \pi_m(R_n)$, and that in the diagram:

$$(1.2) \quad J \downarrow D \qquad J \downarrow J \qquad J \downarrow$$

the upper sequence is the bundle sequence of $R_{n+1} \to R_{n+1}/R_n$, and the lower sequence is the suspension sequence of S^n . We can also prove that the following relations hold:

$$(1.3) \qquad \text{(a)} \ E \circ J = J \circ j^*, \quad \text{(b)} \ i^* \circ J = P \circ p^* \quad \text{(c)} \ \varDelta \circ P = -J \circ \widetilde{\varDelta}.$$

- I. M. James [4] defined a homomorphism $H: \pi_m(S^n) \to \pi_m(S^{2n-1})$, which is a generalization of the Hopf-invariant.
- P. J. Hilton [7] also defined a homomorphism $\widehat{H}: \pi_m(S^n) \to \pi_m(S^{2n-1})$ in a different way. I owe M. G. Barratt the announcement that H is the same as \widehat{H} .

We denote by $\{\alpha, \beta, \gamma\}$ and $\{\alpha, \beta, \gamma, \delta\}$ Toda's constructions, ([1], [2], [3]).

The homotopy groups $\pi_{n+r}(S^n)$, $r \leq 7$, are well known. We list