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§1. Euler and circle methods of summability of Fourier series.
Here the author wishes to discuss the circle method of summability
and other quasi-Hausdorff methods of summability of Fourier series.
At the beginning we remember the Euler method of summability.
It associates with a given sequence {s,} the means

P i(f)r"a—r)n-"s” n=0,1,2, - ,
where » is a constant which satisfies 0<7<1. We denote this method
as (¢, 7). The case r=1 corresponds to ordinary convergence. The
Lebesgue constants for this method of Fourier series are given by
L. Loreh [1] and A. E. Livingston [2].

Theorem 1. The Lebesgue constants for the (g, r) method are
given by
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C is the Euler-Mascheroni constant.
The Gibbs phenomenon of the Fourier series ZM for this
n=1 n
method are investigated by O. Széasz [3].

Theorem 2. If we put s,=0, s,=>, M, then we have
v=1 Y

lim o,(t,)= f 7 siny dy, as nt,—~>t and nti—0.
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On the other hand the circle method of summability associates

with a given sequence {s,} the means
S (p)rra—rys, n=0,1,2,

where r is a constant which satisfies 0<r<1. The case r=1 corre-
sponds to ordinary convergence. We denote this method as (7, 7).
The Lebesgue constants for this method of Fourier series are given
by the author [4].

Theorem 3. The Lebesgue constants for the (r,r) method are
given by
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