106. A Note on the Cut Extension of C-Spaces

By Kazumi NAKANO and Tetsuya SHIMOGAKI Mathematical Institute, Hokkaidô University, Sapporo (Comm. by K. Kunugi, M.J.A., Oct. 12, 1962)

- §1. Let R be a semi-ordered linear space which is Archimedean.¹⁾ A semi-ordered linear space \widehat{R} is called the cut extension of R, if there exists a mapping of R into \widehat{R} $(R \ni a \to a^{\widehat{R}} \in \widehat{R})$ such that
 - (C.1) $(\alpha a + \beta b)^{\hat{R}} = \alpha a^{\hat{R}} + \beta b^{\hat{R}}$ for any $a, b \in R$ and real numbers α, β ;
 - (C. 2) $a \leq b$ if and only if $a^{\hat{k}} \leq b^{\hat{k}}$;
 - (C.3) $\bigcap_{\lambda \in A} a_{\lambda} = 0$ $(a_{\lambda} \in R, \lambda \in A)$ implies $\bigcap_{\lambda \in A} a_{\lambda}^{\hat{R}} = 0$ in \hat{R} ;
 - (C. 4) \hat{R} is universally continuous;²⁾
 - (C.5) for each $\hat{a} \in \hat{R}$ there exists a system of elements $a_{\lambda} \in R$ ($\lambda \in \Lambda$) such that $\hat{a} = \bigcup_{\lambda \in \Lambda} a_{\lambda}^{\hat{R}}$.

When we consider R as a lattice, \widehat{R} : the *cut extension* of lattice R is nothing but a *normal completion* of R in Birkhoff's terminology [1].

It is well known ([4], Theorems 30.2 and 30.3) that for any Archimedean semi-ordered linear space R there exists always \hat{R} : the cut extension of R, and \hat{R} is determined uniquely up to an isomorphism.

Now let E be a compact Hausdorff space throughout this paper and C(E) be the space of all continuous functions defined on E. C(E) is a semi-ordered linear space (by the usual addition and order) which is not always continuous, but Archimedean [2,5,6]. Thus, as is shown above, $\widehat{C(E)}$: the cut extension of C(E) may be considered. The structure of $\widehat{C(E)}$ was investigated in [2] and it was proved that $\widehat{C(E)}$ is isomorphic to the C-space C(E), where E is the Boolean space associated with the lattice of regularly open sets in E, while E comes to be different from the original space E in most cases.

The aim of this note is to construct a function space on E which is isomorphic to $\widehat{C(E)}$. The result is the following:

¹⁾ R is called Archimedean, if $\bigcap_{\nu=1}^{\infty} \frac{1}{\nu} a = 0$ for every $0 \le a \in R$.

²⁾ A semi-ordered linear space is called *universally continuous*, if for any bounded system of elements: $\{a_{\lambda}: a_{\lambda} \leq a, \lambda \in \Lambda\}$ there exists $\bigcup_{\lambda \in \Lambda} a_{\lambda}$.

³⁾ A subset G of E is called to be regularly open, if $G^{-o}=G$.