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Let {4}, S(2), #(2), and R(2) be the same notations as those de-
fined in the statement of Theorem 1 [3] respectively, and ¥'(2) the
second principal part of S(2) in the case where all the accumulation
points of {2,} form an uncountable set.

Since, by Theorem 1,
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Consequently R(2) is expansible, on the domain {1:]|1|< ]}, in
terms of integrals concerning the given funetion S(1) itself.

In this paper I have mainly two purposes: one is to find the
expressions of @(2) and ¥(2) in terms of integrals concerning S(1)
itself respectively, the other is to establish the relation between the
maximum-modulus of S(2) on the circle |2—c¢|=p, containing {1,} and
all the accumulation points of {1,} inside itself and that of E(1) on
the circle |1—c|=p, with p,<p,.

Theorem 4. If the set of all the accumulation points of {4,} is
uncountable, then the second prinecipal part (1) of S(2) in Theorem
1 is expressible in the form
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for every & with 0</c<1 and every p Wlth sup |4, |<p<oo; and if,

contrary to this, the set of all the acecumulation points of {1,} is
countable, then
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