102. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. II

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

Let $\{\lambda_{\nu}\}$, $S(\lambda)$, $\Phi(\lambda)$, and $R(\lambda)$ be the same notations as those defined in the statement of Theorem 1 [3] respectively, and $\Psi(\lambda)$ the second principal part of $S(\lambda)$ in the case where all the accumulation points of $\{\lambda_{\nu}\}$ form an uncountable set.

Since, by Theorem 1,

$$\frac{1}{2\pi i} \int_{|\lambda|=\rho} \frac{S(\lambda)}{(\lambda-z)^{k+1}} d\lambda = \frac{R^{(k)}(z)}{k!} \quad (k=0, 1, 2, 3\cdots)$$

for every point z in the interior of the circle $|\lambda| = \rho$ with $\sup_{\nu} |\lambda_{\nu}| < \rho < \infty$, we obtain

$$\frac{1}{2\pi} \int_{0}^{2\pi} \frac{S(\rho e^{it})}{(\rho e^{it})^{k}} dt = \frac{R^{(k)}(0)}{k!}$$

Consequently $R(\lambda)$ is expansible, on the domain $\{\lambda : |\lambda| < \infty\}$, in terms of integrals concerning the given function $S(\lambda)$ itself.

In this paper I have mainly two purposes: one is to find the expressions of $\Phi(\lambda)$ and $\Psi(\lambda)$ in terms of integrals concerning $S(\lambda)$ itself respectively, the other is to establish the relation between the maximum-modulus of $S(\lambda)$ on the circle $|\lambda - c| = \rho_1$ containing $\{\lambda_\nu\}$ and all the accumulation points of $\{\lambda_\nu\}$ inside itself and that of $R(\lambda)$ on the circle $|\lambda - c| = \rho_2$ with $\rho_2 < \rho_1$.

Theorem 4. If the set of all the accumulation points of $\{\lambda_{\nu}\}$ is uncountable, then the second principal part $\Psi(\lambda)$ of $S(\lambda)$ in Theorem 1 is expressible in the form

$$(1) \qquad \Psi\left(\frac{\rho e^{i\theta}}{\kappa}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} S(\rho e^{it}) \frac{1-\kappa^2}{1+\kappa^2-2\kappa\cos\left(\theta-t\right)} dt \\ -\frac{1}{2\pi} \int_{0}^{2\pi} S(\rho e^{it}) \frac{e^{it}}{e^{it}-\kappa e^{i\theta}} dt - \sum_{\alpha=1}^{m} \sum_{\nu} c_{\alpha}^{(\nu)} \left(\frac{\rho e^{i\theta}}{\kappa} - \lambda_{\nu}\right)^{-\alpha}$$

for every κ with $0 < \kappa < 1$ and every ρ with $\sup_{\nu} |\lambda_{\nu}| < \rho < \infty$; and if, contrary to this, the set of all the accumulation points of $\{\lambda_{\nu}\}$ is countable, then

$$(2) \qquad \sum_{\alpha=1}^{m} \sum_{\nu} c_{\alpha}^{(\nu)} \left(\frac{\rho e^{i\theta}}{\kappa} - \lambda_{\nu} \right)^{-\alpha} = \frac{1}{2\pi} \int_{0}^{2\pi} S(\rho e^{it}) \frac{1 - \kappa^{2}}{1 + \kappa^{2} - 2\kappa \cos(\theta - t)} dt \\ - \frac{1}{2\pi} \int_{0}^{2\pi} S(\rho e^{it}) \frac{e^{it}}{e^{it} - \kappa e^{i\theta}} dt$$