101. Open Basis and Continuous Mappings. II^{*)}

By Sitiro HANAI

Osaka University of Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

Let X and Y be T_1 -spaces and let f(X) = Y be a continuous mapping. f is said to be an S-mapping if the inverse image $f^{-1}(y)$ is separable¹⁾ for each point y of Y. By the open S-image, we mean the image of an open continuous S-mapping. V. I. Ponomarev [4] has recently obtained the following theorem: a T_1 -space X has a point-countable open base if and only if X is an open S-image of a 0-dimensional metric space.

In this note, we shall obtain an analogous theorem concernig the locally countable (star-countale) open base and we shall next investigate the open base of the inverse image space of an open continuous S-mapping.

1. We begin with proving the following theorem which is analogous to V. I. Ponomarev's theorem.

Theorem 1. A T_1 -space X has a locally countable (star-countable) open base if and only if X is an open S-image of a locally separable 0-dimensional metric space.

Proof. As the "if" part is easily seen from our previous note ([1], Theorem 10, Remark 3), we shall prove the "only if" part. Since it is easily verified that X has a star-countable open base if and only if X has a locally countable open base, we deal with the case of the star-countable open base. Let X have a star-countable open base $\mathfrak{A} = \{U_a\}$, then X is decomposed in such a way that $X = \bigcup_{r \in \Gamma} A_r, A_r = \bigcup \{U_a \in \mathfrak{A}_r\}, A_r \cap A_{\tau'} = \phi$ for $\gamma \neq \gamma', \gamma, \gamma' \in \Gamma$ where each \mathfrak{A}_r is a countable subfamily of \mathfrak{A} [2, 6]. Then each A_r has a countable open base \mathfrak{A}_r for each $\gamma \in \Gamma$. Let $\mathfrak{A}_r = \{U_n^{(r)} | n = 1, 2, \cdots\}$. For every point x of A_r $\{U_n^{(r)} | x \in U_n^{(r)}, U_n^{(r)} \in \mathfrak{A}_r\}$ is countable. Let us denote this collection by $\{U_{n_\ell(x)}^{(r)} | i = 1, 2, \cdots\}$, then, since X is a T_1 -space, we have $\bigcap_{i=1}^{\infty} U_{n_\ell(x)}^{(r)} = x$. If the intersection of all sets belonging to a countable subfamily $\{U_{n_\ell}^{(r)}\}$ of \mathfrak{A}_r is a single point, then we define $\xi = (n_1, n_2, \cdots)$. Now let B_r denote the set of all such ξ . We can define the topology

^{*)} This note is a continuation of our previous note [1].

¹⁾ A set A is said to be separable when there exists a countable subset B of A such that $\overline{B} \supset A$. By the definition due to V. I. Ponomarev, S-mapping means the continuous mapping such that the inverse image $f^{-1}(y)$ is perfectly separable for each point y of Y, but we define here in the weaker sense than this.