98. The Product of a Logarithmic Method and the Sequence-to-Sequence Quasi-Hausdorff Method

By T. PATI and S. N. LAL

University of Allahabad, Allahabad, India (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

1. Definitions.
$$\mu_n$$
, defined by
(1.1) $\mu_n = \int_0^1 t^n d\chi(t)$ $(n=0, 1, 2, \cdots), *$

where $\chi(t)$ is a real function of bounded variation in (0, 1), is called the moment constant of rank n generated by the mass-function $\chi(t)$. If, further,

(1.2)
$$\chi(1)=1, \chi(+0)=\chi(0)=0,^*$$

 μ_n is said to be a *regular* moment constant. The matrix $\lambda \equiv (H, \mu_n)$, defined by

(1.3)
$$\lambda_{nk} = \begin{cases} \binom{n}{k} \Delta^{n-k} \mu_k & (n \ge k) \\ 0 & (n < k), \end{cases}$$

is termed the Hausdorff-matrix corresponding to the sequence of moment constants $\{\mu_n\}$. The summability (H, μ_n) of a sequence $\{s_n\}$ to the sum s is defined as the convergence to a finite limit s of its Hausdorff transform, or simply (H, μ_n) transform, σ_n , where

(1.4)
$$\sigma_n = \sum_{k=0}^n \lambda_{nk} s_k \quad (n = 0, 1, 2, \cdots).$$

The transpose of the Hausdorff matrix, that is, the matrix $\lambda^* \equiv (H^*, \mu_n)$, defined by

(1.5)
$$\lambda_{nk}^* = \begin{cases} \binom{k}{n} \Delta^{k-n} \mu_n & (n \le k) \\ 0 & (n > k) \end{cases}$$

is termed the Quasi-Hausdorff matrix corresponding to the sequence of moment constants $\{\mu_n\}$.

The sequence-to-sequence Quasi-Hausdorff transform, or simply the (H^*, μ_n) transform, σ_n^* of a sequence $\{s_n\}$ is defined by

(1.6)
$$\sigma_n^* = \sum_{k=n}^{\infty} {k \choose k} \mathcal{A}^{k-n} \mu_n s_k.$$

Since μ_n is given by (1.1), we also have

(1.7)
$$\sigma_n^* = \sum_{k=n}^{\infty} \int_0^1 s_k {k \choose n} t^n (1-t)^{k-n} d\chi(t)$$

* The function t^0 is defined at t=0 so as to be continuous; thus

$$\mu_0 = \int_0^1 d\chi(t).$$

* The assumption $\chi(0)=0$ is not a substantial restriction.