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1. Introduction. A. Dold and R. Thorn established in [1 the
existence of the following natural isomorphism

gq(X)zq(SP(X, o)), q >= 1,
for a connected CW-complex X with base point o, where SP(X, o)
denotes the infinite symmetric product of X. Professor K. Morita
conjectured that there exists a natural isomorphism

Hq(X; G)zq(SP(X, o); G), q_>_8,
for the homotopy groups with coefficients (in a finitely generated
abelian group G) in the sense of Katuta 2. In [_3 we have proved
that there exists the isomorphism above when X is a 1-connected
countable simplicial complex. Here we shall show that the conjecture
is true when X is a 1-connected CW-complex. The following theorem
which was obtained in our previous paper 4 will play an important
role in our proof.

Theorem 1. Let spaces EF, B C and a map p (E, F)
(B, C) be given. If p is a weak homotopy equivalence of pairs of
spaces, i.e. if p induces an isomorphism

p. z(E, F)z(B, C) for any nO,
then for a CW-complex K the induced map ’p’(EK, F)-->(BK, C)
is a weak homotopy equivalence of pairs of mapping spaces, i.e.
induces an isomorphism

’p. (EK, F)z(B, C) for any
where we mean a 1-1 correspondence by an isomorphism if
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2. Homotopy groups with coefficients. Throughout this paper
we consider only spaces with base point and maps carrying the base
point to the base point. Let G be a finitely generated abelian group.
Y. Katuta defined homotopy groups with coefficients in G, zq(X; G),
for q>__3 and each space X as follows. Let us consider S the unit
circle in the complex number plane with 1 as the base point and let
p,: S--->S be the map defined by p,(e)-e, for a positive integer

m. Let Pqm: Sq-’Sq be the (q--1)-fold suspension Sq-:tpmt) of Pro. Then

1) The suspension Sf:SX--SY of a map f:X--)Y is defined by Sf(s, x)=(s,f(x)) for
sS and xX, and the q-fold suspension of f by Sqf=S(Sq-f) (see also the foot note)).


