21. Normality and Perfect Mappings

By Takesi Isiwata

Tokyo Gakugei University

(Comm. by Kinjirô Kunugi, M.J.A., Feb. 12, 1963)

We assume that the spaces considered here are always completely regular T_1 -spaces. A mapping φ from X onto Y is said to be perfect if φ is a closed continuous mapping and every $\varphi^{-1}(y)$, $y \in Y$, is compact, i.e., φ is a compact mapping. Let E be any dense subspace of a given space X. It is easy to see that the normality of $X \times \beta E$ implies the normality of $X \times BE$ where BE is any compactification of E and E is the Stone-Čech compactification of E. But the following problem is open Γ 1, Γ 3.

(*) Does the normality of $X \times BE$ implies the normality of $X \times \beta E$?

This problem is closely related to the following open problem [1, problem 4]:

(**)¹⁾ Let φ be a perfect mapping from X onto Y such that the image of any proper closed subset of X is a proper closed subset of Y. Is it true that X is normal whenever Y is normal?

In $\S 1$, we shall investigate some special class of spaces, and, in $\S 2$, we shall give the negative answers to the problems (*) and (**).

In the sequel, ω_{α} denotes the smallest ordinal of cardinal \mathbb{X}_{α} and we mean by $W(\omega_{\alpha})$ the set of all cardinals less than ω_{α} ; then $W(\omega_{\alpha})$ ($\alpha \neq 0$), endowed the interval topology, is a countably compact normal space and there are no subsets of cardinal $\langle \mathbb{X}_{\alpha} \rangle$ which are cofinal [6, 9K].

- 1. Closedness of projections. We mean by $\varphi(\text{or } \varphi_x): X \times Y \to X$ the projection $\varphi(x,y) = x$ from $X \times Y$ onto X. Let \mathfrak{N} be the class consisting of all X such that $\varphi: X \times Y \to X$ is always closed for any countably compact space Y.
- 1.1. Lemma. If X has the property such that for any point p and any subset E of X, there is a sequence in E converging to p whenever p is an accumulation point of E, then X belongs to \Re .

Proof. Let Y be a countably compact space and F a closed subset of $X \times Y$ such that the image E of F under $\varphi \colon X \times Y \to X$ is not closed. There is a point p in $\overline{E} - E$. By the assumption, there is a sequence (x_n) in E converging to p. Let (x_n, y_n) be a point of F for every p. Since Y is countably compact, there is an accumula-

¹⁾ This problem is raised by Nagami [7] in connection with Ponomarev's theorem [8].