No. 6] 331

75. A Generalization of König's Lemma

By Gaisi TAKEUTI

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., June 12, 1963)

König proved in [1] the following lemma:

Let $E_1, E_2, \dots, E_n, \dots$ be an enumerable sequence of finite and non empty sets and R a relation of two arguments satisfying the following condition: for every element x_{n+1} of E_{n+1} $(n \ge 0)$ there is an element x_n of E_n corresponding to x_{n+1} by the relation R i.e. x_nRx_{n+1} . Then we can obtain an infinite sequence $a_1, a_2, \dots, a_n, \dots$ such that $a_n \in E_n$ and a_nRa_{n+1} $(n=1, 2, \dots)$.

Sometimes, it is also called Brouwer's fan theorem.

In this paper we shall prove a generalization of this lemma. Let R be a set. p stands for the element of R. A finite set W_p is assigned for every $p \in R$. If R_1 is a subset of R and f is an element of $\prod_{p \in R_1} W_p$, then f is called a partial function (over R) and D(f) (the domain of f) is defined to be R_1 . If D(f)=R, then f is called a total function. If f and g are partial functions and $D(f)=D_0 \subseteq D(g)$ and f(x)=g(x) for every $x \in D_0$, then we call g an extension of f and write $f \prec g$ and $f=g \upharpoonright D_0$. If $f \prec g$ and $D(g)=D(f) \cup N$, then we say 'g is an extension of f over N'.

THEOREM. Let P be a property about partial function satisfying the following conditions:

- 1. P(f) holds if and only if there exists a finite subset N of R satisfying $P(f \upharpoonright N)$.
- 2. P(f) holds for every total function f. Then there exists a finite subset N_0 of R such that P(f) holds if $D(f) \supseteq N_0$.

It is noted that \overline{R} be arbitrary large. The case that R is the set of natural numbers is the original König's lemma.

To prove this theorem we shall first define several concepts. We say $\widetilde{P}(f)$ if there exists a finite subset N of R such that every extension of f over N satisfies P. Clearly $\widetilde{P}(f)$ holds for every total function.

We define f*g to be the function uniquely defined by the following conditions:

- 1) $D(f*g)=D(f)\cup D(g)$
- 2) $f \prec f * g$
- 3) If $p \in D(g) D(f)$, then (f * g)(p) = g(p).