131. The Kernel Representation of the Fractional Power of the Elliptic Operator

By Norio Shimakura

Department of Mathematics, Kyoto University (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1963)

§1. Introduction. Let A be a strongly elliptic operator defined in a domain D of R^n , and let us consider the Dirichlet problem for the operator $A + \lambda I$, λ be a complex number. Then we can define the fractional power $A^{-\alpha}$ under a suitable condition on the spectrum of A. In the case where A is formally self-adjoint, T. Kotake and M. S. Narasimhan [2] have recently proved that $A^{-\alpha}(\operatorname{Re} \alpha > 0)$ has a kernel representation and moreover this kernel is very regular. In this article, we want to obtain the same result for not always self-adjoint operator. We consider the Dirichlet problem in the space $L^2(D)$. We express the weak solution $u \in L^2(D)$ of the equation $Au + \lambda u = f \in L^2(D)$ by means of parametrix according to H. G. Garnir [1], and we also express the Green kernel of $A + \lambda I$ using the Green operator G_{i} . Finally, we show that the kernel $K^{(\alpha)}$ of $A^{-\alpha}$ is very regular. To show this, we used some properties of parametrix which are due to S. Mizohata [3]. The detailed proof will be given in a forthcoming paper.

I thank here Prof. Mizohata, who encouraged me in this subject.

§2. Expression of solutions. Let us consider the strongly elliptic partial differential operator of order 2m defined in a domain D (bounded or unbounded) of R^n

(2.1)
$$A = A\left(x, \frac{\partial}{\partial x}\right) = \sum_{|\nu| \le 2m} a_{\nu}(x) \left(\frac{\partial}{\partial x}\right)^{\nu}, \text{ where}$$
$$\left(\frac{\partial}{\partial x}\right)^{\nu} = \left(\frac{\partial}{\partial x_{1}}\right)^{\nu_{1}} \left(\frac{\partial}{\partial x_{2}}\right)^{\nu_{2}} \cdots \left(\frac{\partial}{\partial x_{n}}\right)^{\nu_{n}}.$$

The coefficients $a_{\nu}(x)$ belong to $\mathscr{B}(\widetilde{D})$, where \widetilde{D} is an open set such that $\overline{D} \subseteq \widetilde{D}$. The condition of ellipticity (2.2) Re $\sum_{|\nu|=2m} a_{\nu}(x)(iy)^{\nu} \ge \gamma |y|^{2m}$, for all $y \in \mathbb{R}^n, \gamma$: const. >0, is to be fulfilled uniformly in D. We denote by $A' = A'\left(x, \frac{\partial}{\partial x}\right)$ the transposed operator of A. Because we only need the local expressions (expressions in a fixed compact set contained in D) of weak solutions and of Green kernels, without loss of generality we can suppose that the coefficients $a_{\nu}(x)$ are defined in \mathbb{R}^n and the uniform ellipticity (2.2) holds in \mathbb{R}^n as well.

At first, we assume the existence of the parametrix E of A (resp.