
566 Vol. 39,
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(Comm. by Kinjir6 KUNUGI, M.J.A., Oct. 12, 1963)

In this paper we shall discuss, under some conditions, the rela-
tion between the distribution of -points of the function S()defined
in the statement of Theorem 1 cf. Proc. Japan Acad., Vol. 38, 263-
268 (1962)_ and that of -points of the ordinary part R() of S(),
on the supposition that R() is a polynomial in of degree less than
or equal to d.

Theorem 23. Let S() and {} be the same notations as those
defined in the statement of Theorem 1; let the ordinary part R()
of S() be a polynomial in of degree less than or equal to d; let

be one of -points of R() for an arbitrarily given complex number
; let p and Z be arbitrarily prescribed positive numbers satisfying
the conditions sup] <p and 0pl respectively; let r be a

positive number such that r ; let m(r, ) denote the minimum

of the modulus ]R()-] on the circle [- -r; and let K= M(p, O)
(1--)p

where M(p, 0) denotes the maximum of the modulus S()[ on the
circle []-. If

Kr
m(r,)

then, in the interior of the circle [--] :r, S() has f-points whose
number (counted according to multiplicity) is equal to that of -points
of R() in the interior of the same circle.

Proof. Since, by hypotheses, R() is a polynomial in of degree
less than or equal to d,

, (1_)
as we have already shown in the course of the proof of Theorem 13

stated in Part V [1]. Substituting M(p, 0) in this inequality by
1--g

Kp, we have therefore

(23) M(r, O)Kr (r< ).
Moreover, if we denote by Z(2) the sum of the first and the

second principal parts of S(2),


