124. On Homotopy Groups $\pi_{2n}(K_m^n, S^n)$

By Seiya SASAO

Department of Mathematics, Musashi Institute of Technology, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1963)

Let K_m^n be a *CW*-complex obtained by attaching an (n+1)-cell V^{n+1} to the *n*-sphere S^n by a map of degree $m: S^n \to S^n \ (n \ge 3)$, and let $[\alpha, \beta]_r$ denote relative Whitehead product of α and β . Since it is known that $\pi_r(K_m^n, S^n)$ is isomorphic to $\pi_r(S^{n+1})$ if r < 2n, we have $\pi_{n+1}(K_m^n, S^n) \approx Z[\chi_{n+1}^m]$ where χ_{n+1}^m denotes the characteristic map of V^{n+1} in K_m^n . Now we shall prove the following

Theorem. If n is 3 or 7,

$$\pi_{2n}(K_m^n, S^n) \approx Z_m[\chi_{n+1}^m, \iota_n]_r \oplus \pi_{2n}(S^{n+1}).$$

If either n is even and not 4,8 or n is 4,8 and m is even,

 $\pi_{2n}(K_m^n, S^n) \approx \mathbb{Z}[\chi_{n+1}^m, \iota_n]_r \oplus \pi_{2n}(S^{n+1}).$

If n is odd and not 3, 7,

$$\pi_{2n}(K_m^n, S^n) = \chi_{n+1*}^m \pi_{2n}(V^{n+1}, S^n) \subseteq Z_{2m}[\chi_{n+1}^m, \iota_n]_r$$

and $m[\chi_{n+1}^m, \iota_n]_r = \chi_{n+1*}^m[\bar{\iota}_{n+1}, \iota_n]_r$. Especially we have

Corollary. Let o_m^n denote the order of $[\chi_{n+1}^m, \epsilon_n]_r$. Then

If n is 3, 7, o_m^n is m.

If n is odd and not $3, 7, o_m^n$ is 2m.

If *n* is even, o_m^n is infinite.^{*)}

The proof is given in several steps.

Let \overline{K}_m^n be a *CW*-complex such that $\overline{K}_m^n = K_m^n \smile V^{n+1}$ and $K_m^n \frown V^{n+1} = S^n$. Then we have an exact sequence of the triad $(\overline{K}_m^n, K_m^n, V^{n+1}), \rightarrow \pi_{2n+1}(\overline{K}_m^n, K_m^n, V^{n+1}) \xrightarrow{\partial_*} \pi_{2n}(K_m^n, S^n) \xrightarrow{\partial_*} \pi_{2n}(\overline{K}_m^n, V^{n+1}) \rightarrow .$

By Theorem of Blaker and Massey Lemma 1 follows from this sequence.

Lemma 1. There exists an exact sequence

 $0 \rightarrow \{ [\chi_{n+1}^m, \iota_n]_r \} \xrightarrow{i} \pi_{2n} (K_n, S^n) \xrightarrow{p_*} \pi_{2n} (S^{n+1}) \rightarrow 0,$

where $\{\alpha\}$ denotes the cyclic group generated by α and p_* is the induced homomorphism by a map $p: K_m^n \to S^{n+1}$ such that $P(S^n)$ is a base point and $P(K_m^n - S^n)$ is of degree 1.

We are now interested in the kernel of p_* . Let **P** be the space of paths in K_m^n starting from the base point, whose terminal points are contained in S^n . Since p induces a fibering $\bar{p}: \mathbf{P} \rightarrow \Omega(S^{n+1})$ with a

^{*)} In [1], James obtained this result in a case that K_m^n is a subcomplex of a total space of an S^{n} -bundle over S^{n+1} .