15. On Absolute Summability Factors of Infinite Series

By E. C. DANIEL

Department of Mathematics, University of Jabalpur, India (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1964)

1. Definitions and Notations. Let s_n denote the *n*-th partial sum of a given infinite series $\sum a_n$. We write

$$t_n = \frac{1}{L_n} \sum_{\nu=1}^n \frac{1}{\nu} s_{\nu},$$

$$L_n = \sum_{\nu=1}^n \frac{1}{\nu} \operatorname{colog} n, \quad \text{as } n \to \infty.$$

where

We say that the series $\sum a_n$ is absolutely summable $\left(R, \frac{1}{n}\right)$, or summable $\left|R, \frac{1}{n}\right|$, if the sequence $\{t_n\}$ is of bounded variation,¹⁾ that is, the series $\sum |t_n - t_{n+1}|$ is convergent. It may be observed that this method of summability is equivalent to the absolute summability method defined by means of the auxiliary sequence

$$\frac{1}{\log n}\sum_{\nu=1}^n\frac{1}{\nu}s_{\nu}^{2\nu}$$

known as the Riesz logarithmic mean of $\{s_n\}$.³⁾

A sequence $\{\lambda_n\}$ is said to be convex⁴ if

where

$$egin{aligned} & \varDelta^2\lambda_n\!=\!\varDelta^2(\lambda_n)\!\geq\!0, \quad n\!=\!1,\,2,\cdots, \ & \varDelta^2(\lambda_n)\!=\!\varDelta(\varDelta\lambda_n)\!=\!\varDelta\lambda_n\!-\!\varDelta\lambda_{n+1} \ & \varDelta\lambda_n\!=\!\varDelta(\lambda_n)\!=\!\lambda_n\!-\!\lambda_{n+1}. \end{aligned}$$

and

Let $\{\lambda_n\}$ be a monotonic increasing sequence such that $\lambda_n \to \infty$, as $n \to \infty$.

We write

$$A_{\lambda}(\omega) = A^{0}_{\lambda}(\omega) = \sum_{\lambda_{n} \leq \omega} a_{n},$$

and, for r > 0,

$$A_{\lambda}^{r}(\omega) = \sum_{\lambda_{n} \leq \omega} (\omega - \lambda_{n})^{r} a_{n} = r \int_{0}^{\omega} (\omega - \tau)^{r-1} A_{\lambda}(\tau) d\tau.$$

For $r \ge 0$, we write

 $R^r_{\lambda}(\omega) = A^r_{\lambda}(\omega)/\omega^r.$ $\sum a_n$ is said to be absolutely summable (R, λ_n, r) , or summable

1) Symbolically $\{t_n\} \in BV$.

- 3) Hardy [3], §4.16.
- 4) Zygmund [8], p. 58.

²⁾ This can be easily seen by virtue of Lemma 3 of Iyer's paper [4], which states that the sequence $\{\omega_n\} \equiv \left\{ \left(1 + \frac{1}{2} + \dots + \frac{1}{n+1}\right) / \log n \right\}$ is of bounded variation, when we note that ω_n is strictly positive for $n \ge 2$.