15. On Absolute Summability Factors of Infinite Series

By E. C. DANIEL

Department of Mathematics, University of Jabalpur, India (Comm. by Kinjir6 KUNUGI, M.J.A., Feb. 12, 1964)

1. Definitions and Notations. Let s_n denote the n-th partial sum of a given infinite series $\sum a_n$. We write

$$
t_n = \frac{1}{L_n} \sum_{\nu=1}^n \frac{1}{\nu} s_{\nu},
$$

where
$$
L_n = \sum_{\nu=1}^n \frac{1}{\nu} \infty \log n, \text{ as } n \to \infty.
$$

We say that the series $\sum a_n$ is absolutely summable $\left(R, \frac{1}{a}\right)$, or summable $|R, \frac{1}{n}|$, if the sequence $\{t_n\}$ is of bounded variation,¹¹ that is, the series $\sum |t_n-t_{n+1}|$ is convergent. It may be observed that this method of summability is equivalent to the absolute summability method defined by means of the auxiliary sequenee

$$
\frac{1}{\log n} \sum_{\nu=1}^n \frac{1}{\nu} s_{\nu}^{2\nu}
$$

known as the Riesz logarithmic mean of $\{s_n\}$.

A sequence $\{\lambda_n\}$ is said to be convex⁴ if
 $A^2 \lambda_n = A^2(\lambda_n) \ge 0$, $n = 1, 2, \dots$,

where

$$
A^2 \lambda_n = A^2(\lambda_n) \ge 0, \quad n = 1, 2, \dots
$$

$$
A^2(\lambda_n) = A(\lambda_n) = A\lambda_n - A\lambda_{n+1}
$$

and $\Delta\lambda_n = \Delta(\lambda_n) = \lambda_n - \lambda_{n+1}$.

 $A\lambda_n - A\lambda_n$
- λ_{n+1} .
g sequen
 $n \to \infty$. Let $\{\lambda_n\}$ be a monotonic increasing sequence such that $\lambda_n \to \infty$, as $n \to \infty$.

We write

$$
A_{\lambda}(\omega) = A_{\lambda}^0(\omega) = \sum_{\lambda_n \leq \omega} a_n,
$$

and, for $r > 0$,

$$
A_{\lambda}^r(\omega) = \sum_{\lambda_n \leq \omega} (\omega - \lambda_n)^r a_n = r \int_0^{\omega} (\omega - \tau)^{r-1} A_{\lambda}(\tau) d\tau.
$$

For $r\geq 0$, we write

 $R_{\lambda}^{r}(\omega) = A_{\lambda}^{r}(\omega)/\omega^{r}$.
 $\sum a_{n}$ is said to be absolutely summable (R, λ_{n}, r) , or summable

1) Symbolically $\{t_n\} \in BV$.

2) This can be easily seen by virtue of Lemma ³ of Iyer's paper[4], which states that the sequence $\{\omega_n\} \equiv \left\{\left(1+\frac{1}{2}+\cdots+\frac{1}{n+1}\right) \middle/ \log n\right\}$ is of bounded variation, when we note that ω_n is strictly positive for $n\geq 2$.

3) Hardy [3], §4.16.

4) Zygmund [8], p. 58.