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15. On Absolute Summability Factors of Infinite Series
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(Comm. by Kinjird KUNUGI, M.J.A., Feb. 12, 1964)

1. Definitions and Notations. Let s, denote the m-th partial
sum of a given infinite series > a,. We write

1 &1
t,=— —8,,
L, v2=1 )
where L,=> lcf)log n, as n—>oo,
v=1y

We say that the series >) a, is absolutely summable (R, —1—>, or sum-
n

mable lR, —1—‘, if the sequence {t,} is of bounded variation,” that is,
n

the series >1|f,—%,.,| is convergent. It may be observed that this
method of summability is equivalent to the absolute summability
method defined by means of the auxiliary sequence
1 $lgw
logn »=1 v
known as the Riesz logarithmic mean of {s,}.?
A sequence {1,} is said to be convex® if
A2, =4*(2,)=>0, n=1,2,---,
where A*(2,)=4(d42,)=d2,— 42, ,
and A2, =d(2,)=2,—Aps1.
Let {4,} be a monotonic increasing sequence such that
A,—>00, as n—>oo,

We write
Afw) =AYw)= S a,,

and, for >0,
H0)= 3 (0—2,) @y =1 f “(0—2) 1 A,(0)dx.
ApSo A
For r>0, we write

R(w)=A%Yw)/o".
Sla, is said to be absolutely summable (R, 1, r), or summable

1) Symbolically {t,}cBYV.

2) This can be easily seen by virtue of Lemma 3 of Iyer’s paper [4], which states
that the sequence {m,,}s{<1+—é—+~ +7n.-ll-—1—) / log n} is of bounded variation, when
we note that w, is strictly positive for n>2.

3) Hardy [3], §4.16.

4) Zygmund [8], p. 58.



