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§ 1. The quasi-Hausdorff transformation (H*, ) is defined as
transforming the sequence {s,} into the sequence {h}} by means of
the equation
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where the weight function Y(r) is of bounded variation in the
interval 0<r<1, This transformation is regular if and only if

Y(1)—¥(+0)=1.
We may assume, in the following, that
v(1)=1, Y(+0)=0.
Corresponding to any fixed number » with 0<r<1, if we put
Y(x)=e,(x), where
e,(x):{o for 0<a<r
1 for r<x<l1,
then the quasi-Hausdorff transformation reduces to the circle trans-
formation (7, 7).

The Lebesgue constant of order = for the method (H*, ) is
then defined to be
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As is well known, if L*(n;¥)—>c0 as m—>oo, then there is a
continuous function whose Fourier series is not summable (H*, )
for at least one point.

The Lebesgue constants for the method (7, ) were studied by
L. Lorech [4] and by the author [2]. On the other hand, first A. E.
Livingston [38] and recently L. Lorch and D. J. Newman [4] studied
the Lebesgue constants for the regular Hausdorff methods of sum-
mability in detail. For the definition and the properties of the
Hausdorff methods, see, e.g., G. H. Hardy [1]. We shall study, in
this note, the Lebesgue constants for the quasi-Hausdorff methods
of summability.

§2. From (1.1), we get




