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62. Use of the Function sin x/x in Gravity Problems

By C. H. DIx
(Comm. by Chuji Tsuo, M.J.A., April 13, 1964)

The paper of Y. Tomoda and K. Aki, under the above title, de-
scribes a method of such simplicity and ease of application as to make
it worthy of any small further clarification. Let us look at the "con-
vergence" of the series used. Quotes are used because observed
values enter the series as well as analytical expressions, so conver-
gence in the ordinary strict sense may not be applicable.

In their paper, Tomoda and Aki, for clear exposition, take grid
points at +/-nz with corresponding gravity anomaly values /g and
project downwards to a depth, d in radians. From this downward pro-
jection of /g, a corresponding surface mass density is found, which
will yield the same anomaly field as the original one at the datum
surface. Then they pass to the more useful case where $ and 8 are
the actual horizontal and vertical distances measured in any conve-
nient units and a is the grid spacing between gravity stations measured
in the same units. We start from this latter stage of their work.

Let the ratio /a be r. Then the mass surface density under
the ith grid point will be
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where (see reference 1), p. 446) k is the gravitational constant and
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with
(r)--r/{(j+r)}. ( 3

The terms @(r)r/zj as j increases, for practical values of r, such
as r-l 8(r) is an alternating sequence of terms of decreasing
numerical values.

L. B. W. Jolley) (see pp. 22-23) lists summation formulae giving
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t?(r)--(1/2)(e/sinh r)--er/(2r). 4

So if we use the constant lateral extensions of the /g values,
as Tomoda and Aki) (p.446 bottom lines) do for Vening Meinesz’s
gravity profile :17 in the East Indies, then we can compute M(i, r)


