70. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. X

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô Kunugi, M.J.A., May 9, 1964)

In this paper we shall treat of some applications of Theorems 2 and 3 established in the first paper of the same title as above [1].

Definitions and preliminaries. Let M be an arbitrarily prescribed positive constant; let $\{\lambda_{\nu}^{(\omega)}\}_{\nu=1,2,3,\dots}$ be any infinite sequence of complex numbers with multiplicities properly counted such that $\sup_{\nu} |\lambda_{\nu}^{(\omega)}| \leq M$; let c_{ω} be any finite complex number, not zero; let $\{\varphi_{\nu}^{(\omega)}\}_{\nu=1,2,3,\dots}$ and $\{\Psi_{\mu}^{(\omega)}\}_{\mu=1,2,3,\dots}$ both be incomplete orthonormal infinite sets in the complex abstract (complete) Hilbert space \mathfrak{H} which is separable and infinite dimensional; let us suppose that these two orthonormal sets are mutually orthogonal and determine a complete orthonormal system in \mathfrak{H} ; and let $(\beta_{ij}^{(\omega)})$ be a bounded normal matrix-operator with $\sum_{j=1}^{\infty} |\beta_{ij}^{(\omega)}|^2 \neq |\beta_{ii}^{(\omega)}|^2$, $i=1, 2, 3, \cdots$, in Hilbert coordinate space l_2 . Then, as already shown [3], the operator \widetilde{N}_{ω} defined by

$$\widetilde{N}_{\omega} = \sum_{\nu=1}^{\infty} \lambda_{\nu}^{(\omega)} \varphi_{\nu}^{(\omega)} \otimes L_{\varphi_{\nu}^{(\omega)}} + c_{\omega} \sum_{\mu=1}^{\infty} \Psi_{\mu} \otimes L_{\varphi_{\mu}^{(\omega)}} \quad (\Psi_{\mu} = \sum_{j=1}^{\infty} \beta_{\mu j}^{(\omega)} \psi_{j}^{(\omega)})$$

is a bounded normal operator with point spectrum $\{\lambda_{\nu}^{(\omega)}\}$ in \mathfrak{H} such that its continuous spectrum is not empty, its norm is given by $\max \ (\sup \ |\lambda_{\nu}^{(\omega)}|, \ |c_{\omega}| \cdot ||(\beta_{ij}^{(\omega)})||), \ \text{and} \ \varphi_{\nu}^{(\omega)} \ \text{is an eigenelement of} \ \widetilde{N}_{\omega} \ \text{corre-}$ sponding to the eigenvalue $\lambda_{\nu}^{(\omega)}$; and if such $M, c_{\omega}, \{\varphi_{\nu}^{(\omega)}\}, \{\psi_{\mu}^{(\omega)}\}, and (\beta_{ij}^{(\omega)})$ as above are appropriately chosen, conversely any bounded normal operator with point spectrum $\{\lambda_{\nu}^{(\omega)}\}$ and nonempty continuous spectrum in \mathfrak{H} is expressible by such a series of linear functionals $L_{\varphi_{\mu}^{(\omega)}}, L_{\phi_{\mu}^{(\omega)}}$ as above. On the assumption that M is fixed, we now denote by $\widetilde{\mathfrak{N}}(M)$ the class of bounded normal operators \widetilde{N}_{ω} for all those $\{\lambda_{\nu}^{(\omega)}\}, c_{\omega},$ $\{\varphi_{\nu}^{(\omega)}\}, \{\Psi_{\mu}^{(\omega)}\}, \text{ and } (\beta_{ij}^{(\omega)}) \text{ which satisfy the above conditions respectively.}$ Moreover, for any $\widetilde{N} \in \widetilde{\mathfrak{N}}(M)$ we denote by $\mathcal{J}(\widetilde{N})$ the continuous spectrum of \widetilde{N} , by $\varDelta^+(\widetilde{N})$ the set of all those accumulation points of the point spectrum $\{\lambda_{\lambda}\}$ of \widetilde{N} which do not belong to $\{\lambda_{\lambda}\}$ itself, by $\mathcal{J}^{-}(\widetilde{N})$ the set $\Delta(\widetilde{N}) - \Delta^+(\widetilde{N})$, and by $\{K(\zeta)\}$ the complex spectral family of \widetilde{N} . Then, as already pointed out in one of the preceding papers [2], $\widetilde{N} \lceil I - K(\varDelta^{-}(\widetilde{N})) \rceil$ is a bounded normal operator whose point spectrum and continuous spectrum are given by $\{\lambda_{\nu}\}$ and $\mathcal{I}^{*}(\widetilde{N})$ respectively.