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Faculty of Education, Kumamoto University

(Comm. by Kinjir6 KUNUGI, M.J.A., June 12, 1964)

In this paper we are again concerned with the problem of apply-
ing Theorem 3 cf. Proc. Japan Acad., Vol. 38, No. 6, 267-268 (1962)
from a different point of view.

Theorem 28. Let M be a positive constant; let 22, (.), and (M)
be the same notations as those defined in the preceding paper; let
{}_-,,,,... be an arbitrarily prescribed infinite sequence of complex
numbers (counted according to the respective multiplicities) such that
supine] __<M; let {}__,,,... and {}=,,,... both be incomplete or-

thonormal systems which are mutually orthogonal and determine a
complete orthonormal system in @; let c be an arbitrarily given
complex number, not zero; let N be the bounded normal operator
defined by

N=2@L+cL (--fl);
=1 =1 j=l

let F be a rectifiable closed Jordan curve, positively oriented, such
that the disk ]2]max[M, [c].]](fl)]] lies in the interior of F it-

ch) C0)self; and let (flz)n__(flq), (n--0,1,2,...’,, --0 for i#j;c--I [orjj

j=l 2 3 ., q--fl), for convenience. Then, for the ordinary part
R()-- afl)n, ( < ), of any S() e(M),

f(26)
r T (i--1),

where _, p, and the linear functional-series T on the

right-hand side is a bounded normal operator with point spectrum
{R(2)}=1...... in 0. Moreover the eigenspace of T corresponding to
the eigenvalue R(2) coincides with that of N corresponding to the
eigenvalue 2.

Proof. Since, by hypotheses, (fl) is a bounded normal matrix-

operator with ]fl# ]fl,]0, (i-1, 2, 3,...), in Hilbert coordinate

space l, the point spectrum of N is surely given by {2}, as already
demonstrated before [cf. Proc. Japan Acad., Vol. 39, No. 10, 743-748
(1963). Moreover, by hypotheses, all the singularities of S(2) and
the (point and continuous) spectra of N are wholly contained in the
interior of F. By reference to Theorem 3, we have therefore


