A Note on Riemann's Period Relation 150.

By Kunihiko MATSUI

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1964)

1. Let W be a Riemann surface of infinite genus and \Im the ideal boundary of W. First we consider the following classes of dividing cycles on W.

DEFINITION 1. A dividing cycle C on W belongs to the class \mathfrak{D}_h of dividing cycles of order at most h when, for h > 1, C can be written as $C = \sum_{k=1}^{K} \sigma_k$ with some $K \leq h$ where σ_k is a closed curve, and for any $i \leq K \sigma_1 \cdots \sigma_{i-1}, \sigma_{i+1} \cdots \sigma_K$ are homologously independent mod \Im . For h=1 \mathbb{D}_1 is the class of connected dividing curves.

DEFINITION 2. A dividing cycle on W belongs to the class \mathfrak{D}'_h $(\subset \mathbb{D}_{h})$ of dividing cycles of order h, when it is written as K=h in Def. 1, *i.e.* $\mathfrak{D}_{h} = \mathfrak{D}_{h} - \mathfrak{D}_{h-1}$.

DEFINITION 3. An exhaustion of W by regular regions (F_n) belongs to the class \mathcal{E}_{h} of semi canonical exhaustions of at most order h, when it satisfies the following conditions:

(A) (i) It is an exhaustion in Noshiro's sense, $(cf. \lceil 6 \rceil, p. 50).^{*}$ (ii) Denoting canonical partition Q of the set of the contours of F_n (cf. [3]) by $Q(\partial F_n) = \sum_{i=1}^{m(n)} \Gamma_n^i$, $(\Gamma_n^i \in \mathfrak{D}_h, \Gamma_n^i) = \sum_{k=1}^{K(n,i)} \sigma_{nk}^i$, and σ_{nk}^i is a closed contour) there exist at least one Γ_n^i such that $\Gamma_n^i \in \mathfrak{D}_h^{\prime}$.

(iii) $\Gamma_n^i \sim \sum \Gamma_{n+1}^{ij} (\Gamma_n^i, \Gamma_{n+1}^{ij} \in \mathfrak{D}_h)$ being inner and outer boundary of a component F_n^i of $F_{n+1} - \overline{F}_n$, there is only one component of $F_{n+2} - \overline{F}_{n+1}$ which is adjoined to F_n^i along each Γ_{n+1}^{ij} .

2. By using Lemma 5 in [2], slit method in [7], and Noshiro's graph in [6], we can prove easily the following

LEMMA 1. For $h \ge 1$, $\mathcal{E}_h \neq \phi$.

Let D_{nk}^{i} be an annulus which satisfies the conditions:

(B) (i) D_{nk}^{i} includes σ_{nk}^{i} and $\overline{D_{nk}^{i}}$ is a closed annulus contained in $F_{n+1} - \overline{F_{n-1}}$.

(ii) $\overline{D_{nk}^i} \cap \overline{D_{m\beta}^a} = \phi$ if $n \neq m$ or $i \neq \alpha$ or $k \neq \beta$. We put $D_n^i = \sum_{k=1}^{K(n,i)} D_{nk}^i$, $D_n = \sum_{i=1}^{m(n)} D_n^i$, $\partial D_n = \beta_n - \alpha_n$. Let M_{nk}^i , M_n^i , and M_n be the moduli of D_{nk}^i , D_n^i , and D_n respectively. We consider a harmonic function u_n in D_n which vanishes on α_n and is equal to M_n on β_n , and the conjugate v_n of u_n satisfies $\int_s dv_n = 2\pi$. Putting u + iv

[[]p] means the p-th paper in References which are shown at the end of this paper.