No. 9]

148. Differential Forms of the Second Kind on Algebraic Varieties with Certain Imperfect Ground Fields*

By Satoshi ARIMA

Department of Mathematics, Musashi Institute of Technology, Tokyo (Comm. by Zyoiti Suetuna, M.J.A, Nov. 12, 1964)

1. Let V be an irreducible projective variety of dimension r defined over a field k of characteristic $p \neq 0$. We assume that the field K of rational functions of V over k is a regular extension of k. A subvariety W of V/k will mean a subvariety which is defined and irreducible over k; the local ring of W on V/k will be denoted by \mathfrak{o}_W , and the integral closure of \mathfrak{o}_W in K by $\overline{\mathfrak{o}}_W$. A subvariety W of V/k is simple (over k) if and only if the local ring \mathfrak{o}_W is regular.

We shall consider derivations and differential forms of K over k^p or, equivalently, over K^p . (They need not necessarily be trivial on k.) The exterior differential $d\omega$ of a differential form ω of K is therefore to be understood also in that sense. We have $d(z^p\omega)=z^pd\omega$, $z \in K$. Following the usual definition (in [3]) we define holomorphic differential forms and derivations as follows. A derivation ∂ of Kis holomorphic at a subvariety W of V/k if $\partial \bar{\mathfrak{o}}_W \subseteq \bar{\mathfrak{o}}_W$. A differential form ω of K of degree q is holomorphic at W if $\omega(\partial_1, \dots, \partial_q) \in \overline{\mathfrak{o}}_W$ for all derivations $\partial_1, \dots, \partial_q$ which are holomorphic at W. We denote by $\mathcal{Q}_1(V)$ the k-vector space of all differential forms of K of degree 1 which are holomorphic at every subvariety of V/k. A differential form ω of K of degree q is of the second kind at a subvariety W if $\omega - d\theta_{\scriptscriptstyle W}$ is holomorphic at W with a suitable differential form $\theta_{\scriptscriptstyle W}$ of degree q-1. If ω is of the second kind at W, then $\alpha^p \omega$ with $\alpha \in k$ is also of the second kind at W. In fact, if $\omega - d\theta$ is holomorphic at W, then $a^p \omega - d(a^p \theta) = a^p (\omega - d\theta)$ is holomorphic at W since $a^p \in \overline{\mathfrak{o}}_W$. All closed differential forms of K of degree 1 which are of the second kind at every subvariety of V/k form therefore a k^p -vector space $\mathcal{Q}_2(V)$, and the set $\mathcal{Q}_e(V)$ of differentials dz $(z \in K)$ is a k^p -vector subspace of $\mathcal{Q}_2(V)$. The purpose of the present note is to show that the dimension over k^p of the factor space $\mathcal{D}_2(V)/\mathcal{D}_e(V)$ equals the dimension over k of the space $\mathcal{Q}_{\mathbf{1}}(V)$ under the assumption $[k:k^{p}]$ $<\infty$. In the case where k is perfect, our result implies the known equality $\dim_k \mathcal{Q}_2(V)/\mathcal{Q}_e(V) = \dim_k \mathcal{Q}_1(V)$, which we have shown in [1]

^{*} After the completion of this paper, the auther found that the same result had been obtained in a more general form by E. Kunz in "Einige Anwendungen des Cartier-Operators", Arch. d. Math., 13, 349-356 (1962). However, our treatment, using derivations and uniformization of relatively simple points introduced by Zariski-Falb [4], is essentially different from that of Kunz.