(3)

1. Positive Pseudo-resolvents and Potentials

By Kôsaku Yosida

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Jan. 12, 1965)

1. Introduction. Let Ω be a set, and denote by X a Banach space of real-valued bounded functions f(x) defined on Ω and normed by $||f|| = \sup_{x \in \overline{\Omega}} |f(x)|$. We assume that X is closed with respect to the lattice operations $(f \wedge g)(x) = \min(f(x), g(x))$ and $(f \vee g)(x) = \max(f(x), g(x))$. For any linear subspace Y of X, we shall denote by Y^+ the totality of functions $f \in Y$ which are ≥ 0 on Ω , in symbol $f \geq 0$. We also use the notation $f^+ = f \vee 0$ and $f^- = (-f) \vee 0$.

We denote by L(X, X) the totality of continuous linear operators defined on X into X. A family $\{J_{\lambda}; \lambda > 0\}$ of operators $\in L(X, X)$ is called a *pseudo-resolvent* if it satisfies the *resolvent equation* (1) $J_{\lambda}-J_{\mu}=(\mu-\lambda)J_{\lambda}J_{\mu}.$

Suggested by the case of the resolvent $J_{\lambda} = (\lambda I - A)^{-1}$ of the infinitesimal generator A of a semi-group $\{T_t; t \ge 0\}$ of operators $\in L(X, X)$ of class $(C_0)^{1}$ mapping X^+ into X^+ , we shall assume conditions:

(2) J_{λ} is positive, in symbol $J_{\lambda} \ge 0$, that is, $f \ge 0$ implies $J_{\lambda} f \ge 0$ for all $\lambda > 0$.

$$\|\lambda J_{\lambda}\| {\leq} 1 \quad ext{for all } \lambda {>} 0.$$

Then, an element $f \in X$ is called *superharmonic* (or *subharmonic*) if $\lambda J_{\lambda} f \leq f$ (or $\lambda J_{\lambda} f \geq f$) for all $\lambda > 0$, and an element $f \in X$ is called a *potential* if there exists a $g \in X$ such that $f = s-\lim_{\lambda \downarrow 0} J_{\lambda}g$, where s-lim denotes the strong limit in X, i.e., uniform limit on Ω .

We shall be concerned with the *potential operator* V defined by (4) $Vf = s - \lim_{\lambda \downarrow 0} J_{\lambda} f$ (when $s - \lim_{\lambda \downarrow 0} J_{\lambda} f^+$ and $s - \lim_{\lambda \downarrow 0} J_{\lambda} f^-$ both exist).

Our main results are stated in the following two theorems.

Theorem 1. Let J_{λ} satisfy (1) and (2). Then $V \ge 0$ and we have:

(5) Let $f \in X^+$, $g \in X^+$ and $\lambda > 0$, and define $V_{\lambda} = V + \lambda^{-1}I$. If $(V_{\lambda}f)(x) \leq (Vg)(x)$ on the support (f), we must have $V_{\lambda}f \leq Vg$. (the principle of majoration).

Theorem 2. Let J_{λ} satisfy (1), (2) and (3). If the range R(V) of the potential operator V is dense in X, then $R(V_{\lambda})$ is also dense in X and the null space $N(V) = \{f; Vf=0\}$ consists of the zero vector only. Moreover, J_{λ} is the resolvent of a linear operator A with dense domain D(A) defined through the Poisson equation AVf=-f.

Remark. Two special cases of X are important for concrete

¹⁾ See, e.g., K. Yosida: Functional Analysis, Springer, to appear soon.