1. Positive Pseudo.resolvents and Potentials

By Kôsaku Yosida

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Jan. 12, 1965)

1. Introduction. Let Ω be a set, and denote by X a Banach space of real-valued bounded functions $f(x)$ defined on Ω and normed by $|| f || = \sup |f(x)|$. We assume that X is closed with respect to the lattice operations $(f \wedge g)(x) = \min (f(x), g(x))$ and $(f \vee g)(x) = \max (f(x), g(x)).$ For any linear subspace Y of X, we shall denote by Y^+ the totality of functions $f \in Y$ which are ≥ 0 on Ω , in symbol $f \geq 0$. We also use the notation $f^+ = f \vee 0$ and $f^- = (-f) \vee 0$.

We denote by $L(X, X)$ the totality of continuous linear operators defined on X into X. A family $\{J_\lambda; \lambda > 0\}$ of operators $\in L(X, X)$ is called a pseudo-resolvent if it satisfies the resolvent equation $J_\lambda - J_\mu\! =\! (\mu\! -\!\lambda)J_\lambda J_\mu.$

Suggested by the case of the resolvent $J_{\lambda}=(\lambda I-A)^{-1}$ of the infinitesimal Suggested by the case of the resolvent $J_{\lambda} = (\lambda I - A)^{-1}$ of the infinitesimal generator A of a semi-group $\{T_i; t \geq 0\}$ of operators $\in L(X, X)$ of class $(C_0)^{11}$ mapping X^+ into X^+ , we shall assume conditions:

(2) J_{λ} is positive, in symbol $J_{\lambda} \geq 0$, that is, $f \geq 0$ implies $J_{\lambda} f \geq 0$ for all $\lambda > 0$.

(3)]]Jx]]-<_l for all)>0.

Then, an element $f \in X$ is called superharmonic (or subharmonic) if $\lambda J_{\lambda} f \leq f$ (or $\lambda J_{\lambda} f \geq f$) for all $\lambda > 0$, and an element $f \in X$ is called a potential if there exists a $g \in X$ such that $f=s$ -lim $J_{\lambda}g$, where s-lim denotes the strong limit in X, i.e., uniform limit on Ω .

We shall be concerned with the *potential operator* V defined by (4) $Vf = s\lim_{\lambda \downarrow 0} J_{\lambda} f$ (when $s\lim_{\lambda \downarrow 0} J_{\lambda} f^+$ and $s\lim_{\lambda \downarrow 0} J_{\lambda} f^-$ both exist).

Our main results are stated in the following two theorems.

Theorem 1. Let J_{λ} satisfy (1) and (2). Then $V \ge 0$ and we have:

(5) Let $f \in X^+$, $g \in X^+$ and $\lambda > 0$, and define $V_{\lambda} = V + \lambda^{-1}I$. If $(V_{\lambda}f)(x) \leq (V_{\lambda}f)(x)$ on the support (f) , we must have $V_{\lambda}f \leq V_{\lambda}g$. $(the\ principle\ of\ majoration).$

Theorem 2. Let J_{λ} satisfy (1), (2) and (3). If the range $R(V)$ of the potential operator V is dense in X, then $R(V_\lambda)$ is also dense in X and the *null space* $N(V) = \{f; Vf = 0\}$ consists of the zero vector only. Moreover, J_{λ} is the resolvent of a linear operator A with dense *domain* $D(A)$ defined through the Poisson equation $AVf = -f$.

Remark. Two special cases of X are important for concrete

¹⁾ See, e.g., K. Yosida: Functional Analysis, Springer, to appear soon.