47. On the Convergence Theorem for Star-shaped Sets in Eⁿ

By Tunehisa HIROSE

Department of Mathematics, Defense Academy, Yokosuka, Japan (Comm. by Zyoiti Suetuna, M.J.A., March 12, 1965)

Introduction. It is well known, as Blaschke convergence theorem, that a uniformly bounded infinite collection of closed convex sets in a finite dimensional Minkowski space contains a sequence which converges to a non-empty compact convex set. The convergence problem for star-shaped sets seems open up to-day (cf. [1]).

In this paper, modifying F. A. Valentine's proof of the Blaschke convergence theorem in [1], we prove a convergence theorem for star-shaped sets in the n-dimensional euclidean space E^n . In the case of E^3 , Z. A. Melzak's result [2] is known.

1. Notations and lemmas. In the following, we consider sets in the n-dimensional euclidean space E^n only.

Let S be a star-shaped set relative to a point p. Then the closure of S, denoted by clS, is a star-shaped set relative to the point p. If $\{S^{\alpha}; \alpha \in \text{index set}\}$ is a finite or an infinite collection of star-shaped sets relative to a point p, then $\bigcup_{\alpha} S^{\alpha}$ and $\bigcap_{\alpha} S^{\alpha}$ are star-shaped relative to the point p.

An ε -parallel set A_{ε} of a set A is defined by

$$A_{\varepsilon} \equiv \bigcup_{a \in A} K(a, \varepsilon), (0 \leq \varepsilon, \varepsilon \in \text{reals}),$$

where $K(a, \varepsilon)$ denotes the solid sphere with center a and radius ε . The distance between the two points x and y is denoted by d(x, y).

Lemma 1. $(A_{\rho})_{\sigma} \subset A_{\rho+\sigma}$.

Proof. Let x be a point in $(A_{\rho})_{\sigma}$. Then there is a point $y \in A_{\rho}$ such that $d(x, y) \leq \sigma$. Similarly there is a point $z \in A$ such that $d(y, z) \leq \rho$. Hence we have

$$d(x, z) \leq d(x, y) + d(y, z) = \sigma + \rho$$
.

Therefore x is a point of $A_{\rho+\sigma}$.

The distance d(A, B) between the two sets A and B is defined by

$$d(A, B) = \inf_{A \subset B_{\rho} \atop B \subset A_{\rho}} \rho.$$

If A and B degenerate to two points x and y, the distance function coincides with the ordinary distance of E^{n} .

Lemma 2. A collection of compact sub-sets becomes a metric space with the metric defined above.