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Introduction. It is well known, as Blaschke convergence
theorem, that a uniformly bounded infinite collection of closed convex
sets in a finite dimensional Minkowski space contains a sequence
which converges to a non-empty compact convex set. The conver-
gence problem for star-shaped sets seems open up to-day (ef. [17]).

In this paper, modifying F. A. Valentine’s proof of the Blaschke
convergence theorem in [1], we prove a convergence theorem for
star-shaped sets in the m-dimensional euclidean space E*. In the
case of E® Z. A. Melzak’s result [2] is known.

1. Notations and lemmmas. In the following, we consider sets
in the n-dimensional euclidean space E™ only.

Let S be a star-shaped set relative to a point p. Then the
closure of S, denoted by ¢lS, is a star-shaped set relative to the point
p. If {S% aecindex set} is a finite or an infinite collection of star-
shaped sets relative to a point p, then UUS® and N S® are star-shaped
relative to the point p. ) )

An e-parallel set A, of a set A is defined by

A= UK(a, ), (0=e, e€ reals),

where K(a, €) denotes the solid sphere with center a and radius e.
The distance between the two points ¢ and ¥ is denoted by d(x, y).

Lemma 1. (A,):CA4p+o.

Proof. Let ® be a point in (4,),. Then there is a point y€ 4,
such that d(x, y)<o. Similarly there is a point z€ A such that
d(y, 2)=<p. Hence we have

d(x, 2)=d(z, y)+d(y, 2)=0+p.
Therefore « is a point of A,ic.

The distance d(A, B) between the two sets A and B is defined

by

If A and B degenerate to two points x and y, the distance function
coincides with the ordinary distance of E".

Lemma 2. A collection of compact sub-sets becomes a metric
space with the metric defined above.



