64. On the Conditional Expectation of a Partial Isometry in a Certain von Neumann Algebra

By Marie Choda

Department of Mathematics, Osaka Gakugei University (Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1965)

1. In 1943, J. von Neumann stated in his monumental paper [3; Lemma 5.2.3] that the crossed product of an abelian von Neumann algebra with a faithful normal trace by an ergodic abelian group of trace preserving automorphisms is a continuous hyperfinite factor. He wrote that the lemma required some rather deep analysis on the decomposition of measure preserving transformations and the proof would be published in a separate paper. Since then no proof is avairable to us.

Twenty years after, H. A. Dye published an interesting paper [2] on a deep analysis of measure preserving transformations and established a theorem [2; Cor. 6.1] which implies the above cited lemma of von Neumann. It seems that Dye's success is an important advance in the recent theory of von Neumann algebras.

However, a slight defect is admitted in a part of Dye's proof. His proof depends principally upon [2; Lemma 6.1]: Let \mathcal{A} be a regular maximal abelian self-adjoint subalgebra of a von Neumann algebra \mathcal{B} of finite type with the faithful normal trace, and let \mathcal{C} be an intermediate von Neumann subalgebra between \mathcal{A} and \mathcal{B} . If U is a unitary operator of \mathcal{B} which preserves \mathcal{A} in the sense that $U\mathcal{A}U^* \subseteq \mathcal{A}$, then the conditional expectation $U^{\mathbb{B}} = E[U|\mathcal{C}]$ of U conditioned by \mathcal{C} in the sense of H. Umegaki [4] is a partial isometry of \mathcal{B} . To prove this, he stated at [2; (6.4)] that

 $(*) \qquad \qquad UAU^* = VAV^*,$

for all $A \in \mathcal{A}$, where V is a partial isometry belonging to the polar decomposition of U^{E} , that is,

$$U^{\scriptscriptstyle E} = E[U|C] = V[U^{\scriptscriptstyle E} * U^{\scriptscriptstyle E}]^{\frac{1}{2}}.$$

Unfortunately, (*) is not true in general.

But, the essential part of the proof of Dye will be salvaged by the following

THEOREM. If \mathcal{A} is a maximal abelian subalgebra of a von Neumann algebra \mathcal{B} with a faithful finite normal trace, if \mathcal{C} is an intermediate von Neumann subalgebra between \mathcal{A} and \mathcal{B} , and if U is a partial isometry of \mathcal{B} preserving \mathcal{A} in the sense that