62. On Linear Holonomy Group of **Riemannian Symmetric Spaces**

By Jun NAGASAWA

Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1965)

Let M be a connected Riemannian manifold with Riemannian structure g, of dimension n and of class C^{∞} , and let M_p be the tangent space of M at p. We denote by L_p the group of all linear transformations of M_p . Let A_p be the subgroup of L_p consisting of all elements of L_p which leave invariant the scalar product $g_p(X,$ Y), the curvature tensor R and its successive covariant differentials $\nabla^k R(k=1,2,\cdots)$ at p. A_p is a Lie group as a closed subgroup of the Lie group L_p . We denote by h(p) the linear holonomy group of M at p. h(p) is a Lie group, and it's identity component $h(p)^{\circ}$ is the restricted linear holonomy group of M at $p \lceil 3 \rceil$. In this note we shall denote by G° the identity component of a Lie group G.

Theorem 1. Let M be a Riemannian locally symmetric space, then the restricted holonomy group $h(p)^{\circ}$ is contained in A_{p}° at each point p in M.

Proof. Since M is an analytic Riemannian manifold, the Lie algebra of h(p) consists of the following matrix [3],

 $\sum_{r\,s} \lambda_{rs} \, R_{rs}$ where $(R_{rs})_{ij} = (R_{ijrs})_p$. We take a local coordinate system (x_1, \cdots, x_n) at p such that $\{(\partial/\partial x_1)_p, \dots, (\partial/\partial x_n)_p\}$ is an orthonormal base of M_p . We express each element of A_p by a matrix with respect to the above base. Then A_p consists of all orthogonal matrices $||a_{ij}||$ which satisfy

$$\sum_{\alpha,\beta,\gamma,\delta}a_{ilpha}a_{jeta}a_{k\gamma}a_{l\delta}\,(R_{lphaeta\gamma\delta})_p=(R_{ijkl})_p$$
 .

Therefore the Lie algebra of A_p consists of all skew symmetric matrices $|| \mu_{ij} ||$ which satisfy

 $\{\mu_{ih}(R_{hjkl})_p + \mu_{jh}(R_{ihkl})_p + \mu_{kh}(R_{ijhl})_p + \mu_{lh}(R_{ijkh})_p\} = 0.$ From the Ricci identity we have

$$abla_s
abla_r R_{ijkl} -
abla_r
abla_s R_{ijkl} = \ -\sum\limits_h \left\{ R^h_{irs} R_{hjkl} + R^h_{jrs} R_{ihkl} + R^h_{krs} R_{ijhl} + R^h_{lrs} R_{ijkl}
ight\} \, .$$

Since M is locally symmetric, the left sides of this expression vanish. By lowering the index h and making use of the identities $R_{ijrs} =$ $-R_{ijrs}$,

$$\sum_{h} \{ (R_{ihrs})_p (R_{hjkl})_p + (R_{jkrs})_p (R_{ihkl})_p \\ + (R_{khrs})_p (R_{ijhl})_p + (R_{lhrs})_p (R_{ijkh})_p \} = 0.$$

This means that the Lie algebra af h(p) is contained in the Lie