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1. Intreduction. Choquet and Deny 1, 2 proved the follow-
ing theorem: A strictly positive continuous kernel V: C--C satisfies
the balayage principle if and only if it satisfies the domination prin-
ciple. (For the notations and the definitions see Section 2.) In the
present note we show that a continuous kernel V: C---C satisfies the
balayage principle on any open set if and only if it satisfies the
domination principle under the assumption that V(C) is dense in C.
In Section 4 we show that if a continuous kernel V: C---C satisfies
the two conditions, the denseness of V(C) in C and the complete
maximum principle, then it is a continuous kernel of Hunt.

2. Notation and definitions. Let X be a locally compact
Hausdorff space, and B denote the Borel field on X. Let C- C(X)
be the totality of bounded continuous real valued functions on X.
C is a real Banach space with the norm Ilfl[-sup If(z)]. Let C=
C(X) be the totality of continuous real valued functions on X with
compact support. Let M=M(X) and M=M(X) be the totalities
of real Radon measures on X and of those with compact support,
respectively. We denote by C+, the subsets of the above sets
consisting of positive elements.

Definition 1. A mapping V of XB into [0, + is called a
kernel on X, if it has the following properties" For any x e X, the
set function V(x, e) of e is a positive Radon measure on X, and for
any relatively compact e e B, the function V(x, e) of x is a locally
bounded Borel unction.

Given a positive Borel function f, its potential Vf(x) is defined
by

If(y) V(x, dy).Vf(x)-

Given a positive Radon measure /, its potential [V(e)is defined
by

V(e)- t V(x, e)dg(x)

provided that /V is a positive Radon measure.
We shall say that a kernel V is continuous if it is a positive


