No. 5] 363

82. Remarks on a Continuous Kernel

By Masanori KISHI and Toshio SHIMAZAKI
Mathematical Institute and Department of Engineering
Mathematics, Nagoya University

(Comm. by Kinjirô Kunugi, M.J.A., May 19, 1965)

- 1. Introduction. Choquet and Deny [1,2] proved the following theorem: A strictly positive continuous kernel $V: C_K \rightarrow C$ satisfies the balayage principle if and only if it satisfies the domination principle. (For the notations and the definitions see Section 2.) In the present note we show that a continuous kernel $V: C \rightarrow C$ satisfies the balayage principle on any open set if and only if it satisfies the domination principle under the assumption that V(C) is dense in C. In Section 4 we show that if a continuous kernel $V: C \rightarrow C$ satisfies the two conditions, the denseness of V(C) in C and the complete maximum principle, then it is a continuous kernel of Hunt.
- 2. Notations and definitions. Let X be a locally compact Hausdorff space, and B denote the Borel field on X. Let C=C(X) be the totality of bounded continuous real valued functions on X. C is a real Banach space with the norm $||f|| = \sup_{x \in X} |f(x)|$. Let $C_K = C_K(X)$ be the totality of continuous real valued functions on X with compact support. Let M=M(X) and $M_K=M_K(X)$ be the totalities of real Radon measures on X and of those with compact support, respectively. We denote by C^+ , \cdots the subsets of the above sets consisting of positive elements.

Definition 1. A mapping V of $X \times B$ into $[0, +\infty]$ is called a *kernel* on X, if it has the following properties: For any $x \in X$, the set function V(x, e) of e is a positive Radon measure on X, and for any relatively compact $e \in B$, the function V(x, e) of x is a locally bounded Borel function.

Given a positive Borel function f, its potential Vf(x) is defined by

$$Vf(x) = \int f(y) V(x, dy).$$

Given a positive Radon measure μ , its potential $\mu V(e)$ is defined by

$$\mu V(e) = \int V(x, e) d\mu(x)$$

provided that μV is a positive Radon measure.

We shall say that a kernel V is continuous if it is a positive