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O. INTRODUCTION. R. Cignoli has proved the ollowing result:
0.1. THEOREM: Le$ A be a Kleene algebra. I$ is possible o
define on A a scve of Lkasiewicz algebra if and only if he
family B of all Boolean elements of A has he following properties:

B 1) B is separating.
B 2) B is lower relatively complete.

The purpose of this note is to show that i, instead o a Kleene
algebra, A is a distributive lattice with first (0) and last element
(1), then we can define on A a structure of Lukasiewicz algebra if
and only if the family B has the properties B 1), B 2), and

B 3) B is upper relatively complete.
We shall use the notations and definitions of 1.
In 1 we introduce an alternative definition o Lukasiewicz

algebra which is useul for the purpose of this paper.
1. DEFINITION OF LUKASIEWICZ ALGEBRAS. We can define

the notion of (three-valued) Lukasiewicz algebra introduced and de-
veloped by Gr. Moisil 3, 4, 5 in the ollowing way 6, 7:
1.1. DEFINITION: A (hree-valued) Lukasiewicz algebra is a system
(A, 1, A, V,,/7) where (A, 1, A, V,) is a de Morgan lattice
and V is a unary opera,or defined on A satisfying he following
axioms"

L1) ..xVVx=l, L 2) xA..x=.xAVx,
L 3) V(xA y) VxA Vy.

In [6 (Theorem 4.3) it was proved that in a (three-valued)
Lukasiewicz algebra the operation also satisfies the condition

K) xA ..x<_yV y,
that is, the system (A, 1, A, V, ) is not only a de Morgan algebra
but a Kleene algebra.

A. Monterio has proved that if we postulate the condition K),
then we can replace axiom L 3) of definition 1.1 by the weaker

L’3) g(xAy)<_VxAVy.
More exactly:

1.2. THEOREM: Let (A, 1, A, V, ",) be a system such that
(A, 1, A, V, ") is a Kleene algebra and is a unary operator

defined on A satisfying axioms L 1), L 2), and L’3). Then (A, 1, A,


