4. Connection of Topological Fibre Bundles

By Akira ASADA

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1966)

In Asada [2], we give a general theory of connections of topological vector bundles. There a connection form $\{\theta_{\sigma}\}$ of the given bundle ξ has following property: The value of $1+\theta_{\sigma}$ belongs in G, the structure group of ξ . Therefore starting from $\{s_{\sigma}\}=\{1+\theta_{\sigma}\}$, we can construct a theory of connections of arbitrary topological fibre bundles without using the ring A of Asada [2]. To state this theory is the purpose of this note. But we don't know whether there exists or not a connection form for an arbitrary fibre bundle ξ .

1. Connection of fibre bundles. We denote by X a topological space, ξ a topological fibre bundle over X with structure group G. The transition functions of ξ are denoted by $g_{\sigma\nu}$.

As in Asada [2], $n^{\circ}1$, we denote the group of continuous maps from $V(\varDelta_s(U))$ to G with equivalence relation $f_1 \sim f_2$ if and only if $f_1 | W = f_2 | W$ for some neighborhood $W(\varDelta_s(U))$ of $\varDelta_s(U)$ in $U \times \cdots \times U$ by $\tilde{C}^s(U, G)$ and set

 $C^{s}(U,G) = \{f | f \in \widetilde{C}^{s}(U,G), f(\dots, x_{i}, x_{i}, \dots) = 1 \text{ for all } i, 0 \le i \le s-1\}.$ Then we define the sheaves $\widetilde{\mathcal{G}}^{r} = \widetilde{\mathcal{G}}^{r}(\xi)$ and $\mathcal{G}^{r} = \mathcal{G}^{r}(\xi)$ by

 $\widetilde{\mathcal{G}}^r : ext{ the sheaf of germs of those maps } \{f_{\scriptscriptstyle \mathcal{D}}\}, f_{\scriptscriptstyle \mathcal{D}} \in \widetilde{C}^r(U,G), \ g_{\scriptscriptstyle \mathcal{D} V}(x_0)^{-1} f_{\scriptscriptstyle \mathcal{D}}(x_0, \cdots, x_r) g_{\scriptscriptstyle \mathcal{D} V}(x_r) {=} f_{\scriptscriptstyle \mathcal{V}}(x_0, \cdots, x_r).$

 \mathcal{G}^r : the subsheaf of $\tilde{\mathcal{G}}^r$ consisted those elements $\{f_U\}$ that $f_U \in C^r(U, G)$ for all U.

Definition. If $\{s_{v}\} \in H^{0}(X, \mathcal{G}^{1})$, then we call $\{s_{v}\}$ is a connection form of ξ .

Note. As usual, if $\{s_{\upsilon}\}$ is a connection form of $\{g_{\upsilon\nu}\}, \{U'\}$ is a refinement of $\{U\}$ and $g_{\upsilon'\nu'} = g_{\upsilon\nu'} | U' \cap V'$, then $\{s_{\upsilon'}\}, s_{\upsilon'} = s_{\upsilon} | U'$, becomes a connection form of $\{g_{\upsilon'\nu'}\}$. We identify $\{s_{\upsilon}\}$ and this $\{s_{\upsilon'}\}$. On the other hand, if $\{s_{\upsilon}\}$ is a connection form of $\{g_{\upsilon\nu}\}$ then $\{h_{\upsilon}(x_0)s_{\upsilon}(x_0, x_1)h_{\upsilon}(x_1)^{-1}\}$ is a connection form of $\{h_{\upsilon}g_{\upsilon\nu}h_{\nu'}^{-1}\}$. We identify $\{s_{\upsilon}\}$ and this $\{h_{\upsilon}s_{\upsilon}h_{\upsilon'}^{-1}\}$. For the simplicity, we identify $\{s_{\upsilon}\}$ and the equivalence class of $\{s_{\upsilon}\}$.

Lemma 1. $H^{0}(X, \mathcal{G}^{1})$ is non-empty if and only if $H^{0}(X, \tilde{\mathcal{G}}^{1})$ is non-empty.

Lemma 2. {1} belongs in $H^{0}(X, \mathcal{G}^{1})$ if and only if {1} belongs in $H^{0}(X, \tilde{\mathcal{G}}^{1})$.

Theorem 1. ξ is equivalent to a bundle with tatally disconnect structure group if and only if $\{1\}$ becomes a connection form of ξ . **Proof.** If $\{h_{\sigma}g_{\sigma\nu}h_{\nu}^{-1}\}$ is locally constant, then $\{s_{\sigma}(x_{0}, x_{1})\}=$