No. 27

31. Sur le théorème de la continuité dans l'espace de deux variables complexes. III

Par Ikuo Kimura

Université de Kôbé

(Comm. by Kinjirô Kunugi, M.J.A., Feb. 12, 1966)

Introduction. Le même sujet que dans les Notes antérieures [2], [3] est poursuivi encore. Nous donnons à nouveau trois autres définitions de pseudoconvexité par rapport à une direction complexe, et montrons que deux de ces définitions sont équivalentes à l'ancienne ([2], [3]); la démonstration est faite par la méthode de M. K. Oka [1]. En outre nous éclaircissons quelques propriétés d'un domaine pseudoconvexe au sens de la troisième définition.

1. Des autres définitions. Soit D un domaine univalent dans l'espace de deux variables complexes w, z; donnons trois définitions de pseudoconvexité comme suit.

Définition 1. Soit w=f(z,t) une fonction continue sur l'ensemble $\{|z-z_0| \le r, \ 0 \le t \le 1\}$ et holomorphe dans un voisinage du cercle $|z-z_0| \le r$ pour tout t fixe, où z_0 et r(>0) sont fixes. Supposons d'ailleurs que l'on ait $(w_0, z_0) \notin D$, $w_0=f(z_0, 0)$ et que $(f(z, 0), z) \in D$ pour $0 < |z-z_0| \le r$. Dans ces circonstances nous disons que le domaine D est pseudoconvexe (I) par rapport à w, s'il existe un nombre positif δ tel que pour tout t dans $0 \le t < \delta$ il existe dans $|z-z_0| < \varepsilon$ un point z satisfaisant à $(f(z,t),z) \notin D$, où ε est un nombre positif arbitrairement donné auparavant.

Définition 2. Considérons les trois domaines suivants:

$$C: |z-z_0| < \rho, |w-f(z)| < r, \\ C_1: \rho' < |z-z_0| < \rho, |w-f(z)| < r, \\ C_2: |z-z_0| < \rho, |w-f(z)| < r'(< r),$$

où z_0 , ρ , ρ' , r, r' sont des nombres fixes quelconques et que f(z) est une fonction holomorphe dans un voisinage quelconque du cercle $|z-z_0| \leq \rho$. Nous disons que le domaine D est pseudoconvexe (II) par rapport à w, si nous avons $C \subset D$ pour tous tels domaines C, C_1 , C_2 satisfaisant à $C_1+C_2\subset D$.

Remarque 1. On peut supposer, sans perdre la généralité, que la fonction f(z) dans la définition 2. est un polynôme ($\not\equiv cte$.). En effet, les domaines C, C_1 , C_2 sont les limites des trois suites croissantes de domaines $C^{(n)}$, $C_1^{(n)}$, $C_2^{(n)}$, $n=1, 2, \cdots$, respectivement, où $C^{(n)}$, $C_1^{(n)}$, $C_2^{(n)}$ sont des formes suivantes:

$$C^{(n)}: |z-z_0| < \rho_n, |w-p_n(z)| < r_n, \ C_1^{(n)}: \rho_n' < |z-z_0| < \rho_n, |w-p_n(z)| < r_n,$$