19. A New Convergence Criterion of Fourier Series

By Masako IZUMI and Shin-ichi IZUMI

Department of Mathematics, Tsing Hua University, Taiwan, China (Comm. by Zyoiti SUETUNA, M.J.A., Feb. 12, 1966)

§ 1. The object of this paper is to prove the following two theorems:

Theorem 1. If (i) f is even, (ii) $\int_0^t f(u)du = o(t)$ as $t \to 0$ and (iii) for some $\delta > 0$, there is an $\eta(1 > \eta > 0)$ such that

$$artheta(t) \!=\! \int_t^\circ \mid d heta(u) \mid = O(t^{-\eta}) \quad ext{as} \quad t \!
ightarrow \! 0$$

where $\theta(u)=u^{-\eta}f(u)$, then the Fourier series of f converges at the origin.

Theorem 2. If f is continuous and is of bounded variation and if there is an $\eta > 0$ such that (i) $t^{-\eta}\omega(t) > A > 0$ as $t \rightarrow 0$ and (ii)

$$\Theta(t) = \int_t^0 |d\theta(u)| = O(t^{-\eta}\omega(t))$$
 as $t \to 0$

uniformly for all x, where $\theta(u) = u^{-\eta} \varphi_x(u)$, then

$$|s_n(x;f)-f(x)| \leq A\omega(1/n)$$
 for all x.

§ 2. Proof of Theorem 1. It is sufficient to prove that

$$s_n = \int_0^{\delta} f(t) \frac{\sin nt}{t} dt = o(1)$$
 as $n \to \infty$,

where δ is a fixed constant. We write $s_n = \int_0^{k/n} + \int_{k/n}^{\delta} = I_1 + I_2$, where k is fixed but a large number. Then $I_1 = o(1)$ as $n \to \infty$. By the assumption, f(u) is of bounded variation on the interval $(k/n, \delta)$, and then $|I_2| \leq V/n$, where V is the total variation of the function f(t)/t on the interval $(k/n, \delta)$. Hence it is sufficient to show that V = o(n). Since $f(t)/t = \theta(t)/t^{1-n}$, the required relation is that, for any given ε and a suitable k,

$$\int_{k/n}^{\delta} \left| d\left(\frac{\theta(t)}{t^{1-\eta}}\right) \right| \leq \varepsilon n.$$

Now $d\Theta(t) = |d\theta(t)|$ and $|\theta(t)| = \left| \int_{t}^{s} d\theta(t) \right| \leq \Theta(t)$ since we can suppose that $f(\delta) = 0$ and then

$$egin{aligned} &\int_{k/n}^{\delta} \left| d \Big(rac{ heta(t)}{t^{1-\eta}} \Big)
ight| &\leq \int_{k/n}^{\delta} rac{|d heta(t)|}{t^{1-\eta}} + \int_{k/n}^{\delta} rac{| heta(t)|}{t^{2-\eta}} dt \ &\leq & \left[rac{ heta(t)}{t^{1-\eta}}
ight]_{k/n}^{\delta} + A \int_{k/n}^{\delta} rac{ heta(t)|}{t^{2-\eta}} dt \leq & A rac{n}{k} < arepsilon n. \end{aligned}$$

This gives the required relation. Thus we get the theorem.