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In studies of Markov processes we sometimes encounter the
situations where we must piece out given Markov processes by an
appropriate procedure. Examples are construction of a branching
Markov process from a given Markov process which we call the
non-branching part and a branching system (cf. 5, 6), construction
of a conservative Markov process from a given process of finite
life time (cf. 11), etc. In this paper we shall discuss such
a procedure.

1. 7otation and the main theorem. Let S be a locally
compact Hausdorff space with countable base and S-Su {z/} be the
one-point compactification of S (if S is compact z/ is attached as an
isolated point).

At first we state the following preliminary
Lemma 1.1. Let {W,., P, x e S} be a system of probability

measures on a a-field of W and let [(w, dy) be a probability kernel
on WS. Let 9- WS, =_@(R).@(S), and -[[ 9, (9-9, j-l,

2,...) with the product a-field :-(R), (-), and put

Q(gco)- P[dw][(w, dy),
where we denote co-(w, y). Then, there exists a unique probability
measure P,(z e S) on (/2, ) satisfying
(1.1) P,[dcl, dc, """, dc]-Q,(dcl)Ql(dc) Q,-l(dc
where co-(w, z).

This lemma is a consequence of Ionescu Tulcea’s Theorem _7],

For a given right continuous strong Markov process {W, x,, ,, 0,, P,, z e S} on S with z/ a death point,) we define:
Definition 1olo A kernel /(w, dy) defined on WS will be

called an instanganeous distribution if it satisfies;
(i) For any fixed w e W,/(w, .) is a probability Borel measure on
S, and for any fixed Borel subset A of S, (., A) is a -measurable
function on W.)

1) i.e. if (w)==# then (w)= for all s>_t. We set (w)=inf {$; (w) =,#}.
2) ={;s_}, 0=<=<oo.


