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Let T()be the same notation as that used in the preceding

paper; that is, let T() be a function with singularities {} _UD
=1

such that the denumerably infinite set {} denoting the set of poles
of T() in the sense of the functional analysis is everywhere dense
on a closed or an open rectifiable Jordan curve and that the mutually
disjoint closed (connected) domains D (3"--1 to n) have no point in

common with the closure {} of {} and lie in the disc

Theorem 56. Let the ordinary part of such a function () as
was stated above be a non-zero constant ; let c be an arbitrary
finite complex number; let a=sup 1 ]; let n(p, c) be the number of

c-points, with due count of multiplicity, of T()in the closed domain
{2: pl 2 G + } with a<p< + ; let

+

P <P<+ ),N(p, c)- dr-n( c) log (a

1 C2 +

and let M(p) max IT(pe-)l Then 1 I N(p, se)dO is a decreas-
e [0,.r] 2Z

ing function of s in the interval I ]sM(p) for every p with
a<p<+ and re(p, ) is a decreasing convex function of log p
for the interval a<p< / ; moreover the equality

1 N(p, se)dO-O
2z

holds for every p with a <p< + oo and every s with M(p)___<s < + oo and
the equation T(2)-se--O has no root in the domain {2:
for every 0 e 0, 2z] and every s with M(p)<___s < + .

Proof. Consider the function f() defined by

T
f(2)-- =. 0-_<12 I-_<- a<p< /

(2=0)
where, as already shown before,

1 [C_= 2zi ] I, I=,, 2-+
d (a < p’ < + oo).


