84. Some Applications of the Functional Representations of Normal Operators in Hilbert Spaces. XX

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1966)

Let $T(\lambda)$ be the same notation as that used in the preceding paper; that is, let $T(\lambda)$ be a function with singularities $\overline{\{\lambda_{\nu}\}} \cup [\bigcup_{j=1}^{n} D_{j}]$ such that the denumerably infinite set $\{\lambda_{\nu}\}$ denoting the set of poles of $T(\lambda)$ in the sense of the functional analysis is everywhere dense on a closed or an open rectifiable Jordan curve and that the mutually disjoint closed (connected) domains D_{j} (j=1 to n) have no point in common with the closure $\overline{\{\lambda_{\nu}\}}$ of $\{\lambda_{\nu}\}$ and lie in the disc $|\lambda| \leq \sup |\lambda_{\nu}|$.

Theorem 56. Let the ordinary part of such a function $T(\lambda)$ as was stated above be a non-zero constant ξ ; let c be an arbitrary finite complex number; let $\sigma = \sup |\lambda_{\nu}|$; let $n(\rho, c)$ be the number of c-points, with due count of multiplicity, of $T(\lambda)$ in the closed domain $\overline{A}_{o}\{\lambda; \rho \leq |\lambda| \leq +\infty\}$ with $\sigma < \rho < +\infty$; let

$$\begin{split} N(\rho, c) &= \int_{\rho}^{+\infty} \frac{n(r, c) - n(\infty, c)}{r} dr - n(\infty, c) \log \rho \ (\sigma < \rho < +\infty), \\ m(\rho, \infty) &= \frac{1}{2\pi} \int_{0}^{2\pi} \log |T(\rho e^{-it})| dt \ (\sigma < \rho < +\infty); \end{split}$$

and let $M(\rho) = \max_{t \in [0,2\pi]} |T(\rho e^{-it})|$. Then $\frac{1}{2\pi} \int_{0}^{2\pi} N(\rho, se^{i\theta}) d\theta$ is a decreasing function of s in the interval $|\xi| < s < M(\rho)$ for every ρ with $\sigma < \rho < +\infty$ and $m(\rho, \infty)$ is a decreasing convex function of $\log \rho$ for the interval $\sigma < \rho < +\infty$; moreover the equality

$$rac{1}{2\pi}\!\int_{0}^{2\pi}\!N(
ho,\,se^{i heta})d heta\!=\!0$$

holds for every ρ with $\sigma < \rho < +\infty$ and every s with $M(\rho) \le s < +\infty$ and the equation $T(\lambda) - se^{i\theta} = 0$ has no root in the domain $\{\lambda: \rho < |\lambda| < +\infty\}$ for every $\theta \in [0, 2\pi]$ and every s with $M(\rho) \le s < +\infty$.

Proof. Consider the function $f(\lambda)$ defined by

$$f(\lambda) \!=\! egin{cases} T\Big(rac{1}{\lambda}\Big) \!=\! \xi \!+\! \sum\limits_{\mu=1}^{\infty} C_{-\mu} \lambda^{\mu} \quad (\lambda \!
eq 0) \qquad \Big(0 \! \leq \! \mid \! \lambda \! \mid \! \leq \! rac{1}{
ho}, \, \sigma \! < \!
ho \! < \! + \! \infty \Big), \ \xi \quad (\lambda \! = \! 0)$$

where, as already shown before,

$$C_{-\mu} = \frac{1}{2\pi i} \int_{|\lambda| = \rho'} \frac{T(\lambda)}{\lambda^{-\mu+1}} d\lambda \quad (\sigma < \rho' < +\infty).$$