138. Γ -Bundles and Almost Γ -Structures. II

By Akira Asada

Department of Mathematics, Sinsyu University, Matumoto

(Comm. by Kinjirô KUNUGI, M.J.A., June 13, 1966)

In [2], the author introduce the notion of almost Γ -structure and give an integrability condition of almost Γ -structures. It suggests us that there seems to be useful that to use some differential geometric aspects of tangent microbundles in the study of Γ -structures. In this note, we treat pseudoconnections of topological microbundles which was defined in [2], and show the following theorem: There is a 1 to 1 correspondence between the set of equivalence classes of Γ -structures on X and the set of Γ -equivalence classes of pseudoflat Γ -bundle structures of the diagram $X \xrightarrow{\mathcal{A}} X \times X \xrightarrow{p} X$, where \mathcal{A} is the diagonal map and p is the projection to the first component (cf. [4]). Notations of this note are similar that of [1], [2].

1. Pseudoconnection of topological microbundles. For an element a of \mathbb{R}^n , we define the parallel transformation t_a by

$$t_a(b) = b - a, b \in \mathbf{R}^n$$

Lemma 1. A homeomorphism f from a neighborhood of the origin of \mathbf{R}^n into \mathbf{R}^n is a parallel transformation if and only if (df)(a, b)=b-a,

where (df)(a, b) = f(b) - f(a).

On the other hand, if $\alpha_{\overline{U}} \in C^1(U, \mathbb{R}^n)$, then (1) $\delta(t_{\alpha_{\overline{U}}})(x_0, x_1, x_2) = t_{(\delta \alpha_{\overline{U}})(x_0, x_1, x_2)}$,

where the multiplication is defined to be the compositions of \mathbf{R}^n and $\delta(t_{\alpha_T})$ and $(\delta \alpha_{\overline{\alpha}})$ are given by

$$\delta(t_{lpha_{\mathcal{U}}})(x_0, x_1, x_2) = t_{lpha_{\mathcal{U}}(x_1, x_2)} t_{lpha_{\mathcal{U}}(x_0, x_2)}^{-1} t_{lpha_{\mathcal{U}}(x_0, x_1)}, \ (\delta lpha_{\mathcal{U}})(x_0, x_1, x_2) = lpha_{\mathcal{U}}(x_1, x_2) - lpha_{\mathcal{U}}(x_0, x_2) + lpha_{\mathcal{U}}(x_0, x_1)$$

Definition. Let $\{\varphi_{\sigma r}(x)\}$ be a transition function of an *n*-dimensional topological microbundle ξ over normal paracompact topological space X, then a collection $\{t_{\alpha_{\sigma}(x,y)}\}, \alpha_{\sigma}(x, y) \in C^{1}(U, \mathbb{R}^{n}),$ is called a pseudoconnection of $\{\varphi_{\sigma r}(x)\}$ if $\{t_{\alpha_{\sigma}}\}$ satisfies

(2) $\varphi_{\overline{\sigma}\overline{\nu}}(x)^{-1}t_{\alpha_{\overline{\sigma}}(x,y)}\varphi_{\overline{\sigma}\overline{\nu}}(y) = t_{\alpha_{\overline{\nu}}(x,y)}.$

According to [1], we call the collection $\{\delta(t_{\alpha\sigma})\}$ to be the curvature form of $\{t_{\alpha\sigma}\}$.

Definition. We call $\{t_{a_{U}}\}$ is a flat pseudoconnection if the curvature form $\{\delta(t_{a_{U}})\}$ of $\{t_{a_{U}}\}$ is equal to 0.

Definition. $\{\varphi_{\sigma r}(x)\}$ is called a pseudoflat microbundle if $\{\varphi_{\sigma r}(x)\}$ has a flat pseudoconnection.