616 [Vol. 42,

137. Sur les structures des espaces rangés. I¹⁾

Par Yukio Yoshida

Université d'Osaka

(Comm. by Kinjirô KUNUGI, M.J.A., June 13, 1966)

§1. Définition de l'espace rangé. Dans ce paragraph, nous étudions la définition d'espace rangé.

Soit R un espace rangé qui satisfait aux axions (A) et (B) de M. Hausdorff et dont l'indicateur est ω . Pour chaque point x de R, la collection de toutes les familles $\mathfrak{V}_{\alpha}(x)(0 \le \alpha < \omega)$ de tous les voisinages de rang α de x satisfait aux quatre conditions suivantes:

- (1) $\mathfrak{V}(x) = \bigcup \mathfrak{V}_{\alpha}(x)$ est non-vide.
- (2) à chaque élément V de $\mathfrak{V}(x)$ on a

$$x \in V$$
.

(3) Pour tout élément V de $\mathfrak{V}(x)$ et pour tout nombre ordinal $\alpha(0 \le \alpha < \omega)$ il existe un nombre ordinal β et un élément W de $\mathfrak{V}_{\beta}(x)$ tels que l'on a

$$\alpha \leq \beta < \omega$$
 et $V \supseteq W$.

(4) Pour toute suite

$$V_0, V_1, \cdots, V_{\gamma}, \cdots (0 \leq \gamma < \beta)$$

bien ordonnée (n'étant pas nécessairement monotone) d'éléments de $\mathfrak{B}(x)$ dont le type est un nombre ordinal β inférieur à ω , il existe un élément V de $\mathfrak{B}(x)$ tel que l'on a

$$V \subseteq \bigcap_{n} V_{\gamma}$$
.

Désignons par (A_r) , (a_r) , et (B_r^*) les conditions (2), (3), et (4) respectivement.

Inversement, sur un ensemble R non-vide et sur un nombre ordinal ω limite inaccessible, supposons que, pour tout point x de R, il existe une collection des familles $\mathfrak{V}_{\alpha}(x)$ des parties de R où α parcourt l'intervalle $0 \le \alpha < \omega$ et laquelle satisfait aux conditions (1), (2), (3), et (4).

Si l'on prend pour la base des voisinages du point x la famille $\mathfrak{V}(x) = \bigcup \mathfrak{V}_{\alpha}(x)$, R devient un espace topologique qui satisfait aux axioms $\alpha(A)$ et $\alpha(B)$ de M. Hausdorff, et dont la profondeur est égale ou supérieur à $\alpha(B)$. De plus, sur cet espace topologique $\alpha(B)$, si l'on prend pour les voisinages de rang $\alpha(B)$ de $\alpha(B)$ devient un espace rangé dont l'indicateur est $\alpha(B)$.

¹⁾ K. Kunugi: Sur la méthode des espaces rangés. I. Proc. Japan Acad., 42, 318-322 (1966).