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Introduction In the previous paper 4 we have studied basic
properties of operators of discrete analytic functions. In this paper
we shall study the uniform convergence of sequences of operators
and show operational solutions of a discrete Volterra integral equation
and a linear discrete derivative equation by making use of operators
of discrete analytic functions.

1. Uniform convergence of sequences of operators. The set
A of all discrete analytic functions is a linear space of infinite
dimension. By the norm II f ll of fe A we understand the number
If]l--sup If(x, y)I, where (x, y) is a finite lattice point in the first
quadrant.

By the norm, the uniform convergence in A is defined as follows:
A sequence f of A converges uniformly to an element f of A if and
only if the sequence If-fll tends to 0 as n--.. The convergence
is denoted by

lim f--f.
A

The normed space A is complete, i.e. any Cauchy sequence is
convergent.

Thus A is a Banach space.
Theorem 1.1. If f and g e A, and limf=f, lim g-g, then

A A
lim (f . g)=f. g.
A

This means that is continuous in the norm topology.
A sequence of operators a is said to be convevgen$ in Op, if

divided by a suitably chosen operator q, it becomes a sequence of
functions e A uniformly convergent to fe A. Then we have

(1.1) lim a-q lim (-).
Theorem 1.2. If lim =a, limb.=b,

o1 O1
(1.2) lira (a+/-b)=a+_b, lim (ab)=ab.

O O
Theorem 1.3. Let a be a complex number. The power series

(1.3)
=o

converges uniformly in any bounded domain in the first quadrant.


