134. Operators of Discrete Analytic Functions and Their Application

By Sirō Hayabara

Department of General Education, $K\bar{o}be$ University

(Comm. by Kinjirô KUNUGI, M.J.A., June 13, 1966)

Introduction. In the previous paper [4] we have studied basic properties of operators of discrete analytic functions. In this paper we shall study the uniform convergence of sequences of operators and show operational solutions of a discrete Volterra integral equation and a linear discrete derivative equation by making use of operators of discrete analytic functions.

1. Uniform convergence of sequences of operators. The set A of all discrete analytic functions is a linear space of infinite dimension. By the norm ||f|| of $f \in A$ we understand the number $||f|| = \sup |f(x, y)|$, where (x, y) is a finite lattice point in the first quadrant.

By the norm, the uniform convergence in A is defined as follows: A sequence f_n of A converges uniformly to an element f of A if and only if the sequence $||f_n-f||$ tends to 0 as $n \to \infty$. The convergence is denoted by

$$\lim f_n = f.$$

The normed space A is *complete*, i.e. any Cauchy sequence is convergent.

Thus A is a Banach space.

Theorem 1.1. If f_n and $g_n \in A$, and $\lim_A f_n = f$, $\lim_A g_n = g$, then $\lim_A (f_n * g_n) = f * g$.

This means that * is continuous in the norm topology.

A sequence of operators a_n is said to be *convergent in Op*, if divided by a suitably chosen operator q, it becomes a sequence of functions $\in A$ uniformly convergent to $f \in A$. Then we have

(1.1)
$$\lim_{O_p} a_n = q \lim_A \left(\frac{a_n}{q} \right).$$

Theorem 1.2. If $\lim_{o_p} a_n = a$, $\lim_{o_p} b_n = b$, then

(1.2)
$$\lim_{o_p} (a_n \pm b_n) = a \pm b, \lim_{o_p} (a_n b_n) = ab.$$

(1.3) Theorem 1.3. Let a be a complex number. The power series $\sum_{n=0}^{\infty} \frac{a^n z^{(n)}}{n!}$

converges uniformly in any bounded domain in the first quadrant.