132. A Fixed Point Theorem for Contraction Mappings in a Uniformly Convex Normed Space

By Shouro KASAHARA

Kobe University

(Comm. by Kinjirô KUNUGI, M.J.A., June 13, 1966)

The purpose of this note is to prove the following

Theorem 1. Let A be a nonempty, weakly compact and convex subset of a uniformly convex normed space,¹⁾ and \mathcal{F} be a nonempty commutative family of contraction mappings²⁾ of A into itself. Then the set of all common fixed points for \mathcal{F} is nonempty, closed and convex.

This follows from Theorems 2 and 3 below.

Following Brodskii and Milman [1], we say that a bounded convex subset S of a normed space has normal structure provided for each convex subset B of S which contains more than one point, there exists a point $a \in B$ such that $\sup_{y \in B} ||a-y|| < d(B)$, where d(B) denotes the diameter of B. A point $a \in B$ is said to be a diametral point of B if $\sup ||a-y|| = d(B)$.

Theorem 2. Each bounded convex subset of a uniformly convex normed space has normal structure.

Proof. It is easily seen that in a normed space E if a bounded subset $B \subset E$ which contains more than one point has a nondiametral point $a \in B$, then λa is a nondiametral point of λB for every $\lambda \neq 0$, and x+a is a nondiametral point of x+B for every $x \in E$. Therefore it is sufficient to show that in a uniformly convex normed space, each bounded convex subset B of diameter 1 which has $\{0\}$ as a proper subset, contains a nondiametral point of it.

Assume that 0 is a diametral point of B. Then we can find a sequence $\{a_n\}_{n\geq 2}$ of points of B such that

$$1 \ge ||a_n|| > 1 - \frac{1}{n}$$
 for every $n \ge 2$.

Suppose that the sequence $\{(1/2)a_n\}_{n\geq 2}$ consists of diametral points of B. Then there exists a sequence $\{b_n\}_{n\geq 2}$ of points of B such that

$$1 \ge \left\| b_n - \frac{1}{2} a_n \right\| > 1 - \frac{1}{n}$$
 for every $n \ge 2$,

¹⁾ A normed space is said to be uniformly convex if $||x_n|| \le 1$, $||y_n|| \le 1$, and $\lim ||x_n+y_n||=2$ imply $\lim ||x_n-y_n||=0$.

²⁾ A mapping f of a subset A of a normed space into A is called a contraction mapping if $||f(x)-f(y)|| \le ||x-y||$ for all $x, y \in A$.