128. Existence and Uniqueness of Extensions of Volumes and the Operation of Completion of a Volume. $I^{*)}$

By Witold M. Bogdanowicz
Catholic University of America, Washington, D.C. (Comm. by Kinjirô Kunugr, m.J.A., June 13, 1966)

Introduction. Let R, Y be the space of reals and a Banach space respectively. The norm of elements in these spaces will be denoted by | \mid.

A nonempty family of sets V of an abstract space X will be called a pre-ring if for any two sets $A_{1}, A_{2} \in V$ we have $A_{1} \cap A_{2} \in V$, and there exist disjoint sets $B_{1}, \cdots, B_{k} \in V$ such that $A_{1} \backslash A_{2}=B_{1} \cup$ $\cdots \cup B_{k}$.

A non-negative finite-valued function v on the pre-ring V will be called a volume if for every countable family of disjoint sets $A_{t} \in V(t \in T)$ such that $A=\bigcup_{T} A_{t} \in V$ we have $v(A)=\sum_{T} v\left(A_{t}\right)$.

In [1] has been presented a direct construction of the space $L(v, Y)$ of Lebesgue-Bochner summable functions and has been developed the theory of an integral of the form $\int u(f, d \mu)$. In the case when the bilinear form is given by $u(y, z)=z y$ for $y \in Y, z \in R$ and $\mu=v$ the above integral coincides with the classical LebesgueBochner integral $\int f d v$.

All basic theorems concerning the algebraical and topological structures of the space $L(v, Y)$ have been proven without developing the theory of measure or the theory of measurable functions.

Basing the theory of integration on set functions defined on pre-rings it was possible in [2], [3] to develop the theory of multilinear vectorial integration and define integral representations of multilinear continuous operators on the space of Lebesgue-Bochner summable functions. It also permitted us to give new constructions of Fubini's theorem and to find its farther generalizations [4].

The theory of Lebesgue-Bochner measurable functions corresponding to the approach developed in [1] has been presented in [5]. The theory of measure has been obtained as a by-product of the theory of integration.

These results permitted us to simplify the theory of integration

[^0]
[^0]: *) This work was partially supported by National Science Foundation Grant G.P. 2565.

