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In [3], I established non-connection methods for linear connections
in the Large bringing respective geometries to the "Erlanger
Programm", the transformation group parameters being adequate
functions of the (local)coordinates and in [4 he extended them
further doubly to the case, where transformation group parameters
are adequate functions of the (local) coordinates (x) as well as of

(, , ..., x ), (2=dx/dt, etc.; t=curve parameter). In 5, [6, and
[8, M. Kurita studied the Finsler spaces by means of the canonical
equations of Hamiltonian types. In this note, I will, being suggested
by his means, establish the following geometries based on canonical
equations of Hamiltonian types of the II-geodesic curves in my sense:
(I) (Doubly)extended affine geometry, (II) (Doubly) extended Euclidean
geometry, (III) Other 20 (doubly) extended geometries indicated on
p. 247 of [14, (IV) Geometry of Finsler-Craig-Synge-Kawaguchi
spaces, all based on canonical equations of Hamiltonian types of II-
geodesic curves in the present author’s sense. (IV) is a detailed
exposition of the n-dimensional case of Art. 4 of [1.

I. (Doubly) Extended af[ine geometry based on canonical
equations of Hamiltonian types of II.geodesic curves. 1.1. A
new method of treatment of II-geodesic curves based on canonical
equations of Hamiltonian types. Consider

()
def

(I.1) w-(o(x, , ..., x )dx, (, /, ...-1, 2, ..., n),
which is global in the differentiable manifold M= [J U of class

C(-positive integer or or co), where the open subset U is the
domain of the local coordinates (x), since (I.1) is written in an
invariant form.

Let xX=xX(t) be a parametrized curve, where t is the canonical
parameter ([14_, Art. 12; [15, Art. 14). Set

()

(I.2) dw(x, , ..., x )dt,

(I.3) L- w,(x, c, ..., x )-p,(t, (q’= x’).
Then the Lagrangian equations for the extremal problem


