170. A Pentavalued Logic and its Algebraic Theory

By Kiyoshi Iséki and Shôtarô TANAKA

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1966)

In this Note, we shall concern with a pentavalued logic by J. Lukasiewicz and its algebraic theory. The fundamental ideas are due to Professor Gr. C. Moisil (see [1] and [2]).

Let L be a set $\{x, y, z, \dots\}$ of propositions. The truth values we denote by 0, 1, 2, 3, and 4. We introduce the negation Nx of x by

The disjunction \lor and the conjunction \land are defined as follows:

\vee	0	1	2	3	4	\wedge	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	1	2	3	4	1	0	1	1	1	1
2	2	2	2	3	4	2	0	1	2	2	2
3	3	3	3	3	4	3	0	1	2	3	3
4	4	4	4	4	4	4	0	1	2	3	4

Then two operations \lor , \land satisfy the well known axiom of a distributive lattice, hence L is a distributive lattice. On the other hand, consider a commutative ring of characteristic 5, and denote the elements by 0, 1, 2, 3, and 4. Then we have 5x=x+x+x+x+x+x=0, and $x^5=xxxxx=x$.

The negation and the modalities have the following algebraic representations.

The negation Nx of x is algebraically denoted by Nx=4(x+1). The necessity

are denoted by $\nu x = x^4 + 4x^3 + x^2 + 4x$ and $\mu x = 3x^4 + 4x^3 + 4x^2 + 4x$ respectively.

In the pentavalued logic, there are two positive modalities as follows:

x	0	1	2	3	4
NµNx	0	0	0	4	4
$N \nu N x$	0	4	4	4	4