169. Some Three Valued Logics and its Algebraic Representations

By Kiyoshi Iséki

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1966)

In his papers [3], [4], A. Rose formulated a three valued logic given by the following matrices:

			x	0	1	2			
			Nx	2	1	0			
\vee	0	1	2			\wedge	0	1	2
0	0	0	0			0	0	1	2
1	0	0	1			1	1	2	2
2	0	1	2			2	2	2	2

and for the implication $x \rightarrow y$,

0	1	2
0	1	2
0	0	1
0	0	0
	0 0 0 0	0 1 0 1 0 0 0 0

Where 0 is the designated value, and from N1=1, 1 is the center of this calculus.

Let $\{0, 1, 2\}$ be a ring with characteristic 3 (see Gr. C. Moisil [1], [2]). Then these primitive functors are algebraically denoted by Nx=2(x+1)

$$x \lor y = x^2 y^2 + xy(x+y), \ x \land y = 2x^2 y^2 + 2xy(x+y) + (x+y),$$

and

 $x \rightarrow y = x^2 y^2 + xy(x+y) + 2xy + y.$

Further, two functors μ and ν defined by

x	0	1	2
μx	0	2	2
u x	0	0	2

are represented by $2x^2$ and x^2+2x respectively. These results are obtained by a similar way of Gr. C. Moisil [1].