167. A Perturbation Theorem for Contraction Semi-Groups

By Isao MIYADERA

Department of Mathematics, Waseda University

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1966)

1. Let A be the infinitesimal generator of a contraction semigroup $\{T(\xi; A); \xi \ge 0\}$ of class (C_0) on a Banach space X. It is well known that

(i) A is a closed linear operator and its domain D(A) is dense in X,

(ii) the spectrum of A is located in the half plane $\Re(\lambda) \leq 0$ and $||\sigma R(\sigma+i\tau; A)|| \leq 1$ for $\sigma > 0$, where $R(\sigma+i\tau; A)$ is the resolvent of A.

Let B likewise be the infinitesimal generator of another contraction semi-group $\{T(\xi; B); \xi \ge 0\}$ of class (C_0) on X. Recently K. Yosida [7] proved that (i') if $D(B) \supset D(\hat{A}_{\alpha})$, where $\hat{A}_{\alpha}(0 < \alpha < 1)$ is the fractional power of A, then A+B defined on D(A) generates a contraction semi-group of class (C_0) , and (ii') if, moreover, $\{T(\xi; A); \xi \ge 0\}$ is a holomorphic semi-group, then A+B defined on D(A) generates a holomorphic semi-group.

In this note we shall prove the following theorem.

Theorem. Let $0 < \alpha < 1$ and let \hat{B}_{α} be the fractional power of B_{α} .

(I) Let us assume that $D(B) \supset D(A)$. Then $A + \hat{B}_{\alpha}$ defined on D(A) generates a contraction semi-group of class (C_0) .

(II) Assume, moreover, that $\{T(\xi; A); \xi \ge 0\}$ is a holomorphic semi-group, then $A + \hat{B}_{\alpha}$ defined on D(A) also generates a holomorphic semi-group.

2. Let B be a closed linear operator with domain D(B) and range in a Banach space X. Let each positive λ belong to the resolvent set of B and let

(1) $\sup_{\substack{\lambda>0\\ \lambda>0}} ||\lambda R(\lambda; B)|| = M < \infty.$ For $0 < \alpha < 1$, the fractional power $\hat{B}_{\alpha} = -(-B)^{\alpha}$ of B is defined as follows:

(2)
$$J^{\alpha}x = \frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} R(\lambda; B) (-Bx) d\lambda \quad \text{for } x \in D(B),$$

(3) \hat{B}_{α} =the smallest closed linear extension of $(-J^{\alpha})$.

(See [1], [2], [5], and [6]). Let likewise A be a closed linear operator with domain D(A) and range in X such that "its resolvent