152. The Lattice of Congruences of Locally Cyclic Semigroups

By Takayuki TAMURA and Wallace ETTERBEEK

University of California, Davis, California (Comm. by Kenjiro ShoDA, M.J.A., Sept. 12, 1966)

In [2] Dean and Oehmke proved Theorem 1. Using Theorem 2 proved by Tamura and Levin [4] we will give another proof for Theorem 1.

Theorem 1. The lattice of congruences on a locally cyclic semigroup is a distributive lattice.

Theorem 2. Let S be a locally cyclic semigroup, then $S = \bigcup_{i=1}^{n} S_i$ where $S_i \subseteq S_{i+1}$ and S_i is a cyclic semigroup.

Let C be a cyclic semigroup. Denote C by C=(n, m) where 1 generates C and n, m are non-negative integers or $n=m=\infty$. C is finite if and only if n, m are finite. See p. 19-20 [1].

Any congruence ρ on a cyclic semigroup C is determined uniquely by its induced homomorphic image C' a cyclic semigroup. We denote $\rho = \rho(n', m')$ where C' = (n', m') and

(1)
$$a\rho b$$
 if and only if $\begin{cases} a=b & a < n', b < n' \\ m' \mid (a-b) & a \ge n', b \ge n'. \end{cases}$

Proposition 1. Let C = (n, m) be a cyclic semigroup $\rho = \rho(n_1, m_1)$ is a congruence on C if and only if $n_1 \le n$, $m_1 \mid m$.

Proposition 2. Let S_1 , S_2 be cyclic semigroups such that $S_1 \subseteq S_2$ and 1 generates S_2 , k generates S_1 . $\rho_1 = \rho_1(n_1, m_1)$ and $\rho_2 = \rho_2(n_2, m_2)$ are congruences on S_1 and S_2 respectively with $\rho_1 = \rho_2 | S_1$ if and only if $n_2 \le n_1$ and $n_1 - r \le n_2 - 1$ where $n_1 \equiv r \pmod{k}$, $1 \le r \le k$, and $m = \operatorname{lcm}(k, m_2)$.

Definition 1. Let σ , ρ be congurences on a groupoid G. Then $\sigma \lor \rho$ is the smallest congruence containing σ and ρ and $\sigma \land \rho$ is the largest congruence contained in σ and ρ .

Since the identity relation is contained in all congruences and the universal relation contains all congruences and intersection preserves congruences for any congruences, σ , ρ on a groupoid G both $\sigma \lor \rho$ and $\sigma \land \rho$ exist.

In [5] Tamura proved the following.

Proposition 3. Let C be a cyclic semigroup; let $\sigma = \sigma(n_1, m_1)$, $\rho = \rho(n_2, m_2)$ be congruences on C then

(i) $\sigma \lor \rho = (\min(n_1, n_2), \gcd(m_1, m_2))$

(ii) $\sigma \wedge p = (\max(n_1, n_2), \operatorname{lcm}(m_1, m_2)).$