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In 2 Dean and Oehmke proved Theorem 1. Using Theorem 2
proved by Tamura and Levin 4 we will give another proof for
Theorem 1.

Theorem 1. The la$$ice of congruences on a locally cyclic
semigvoup is a distributive laice.

Theorem 2. Let S be a locally cyclic semigroup, $hen S-. JS
where S_S+ and S is a cyclic semigroup.

Let C be a cyclic semigroup. Denote C by C-(n, m) where
generates C and n, m are non-negative integers or nm-oo. C is
finite if and only if n, m are finite. See p. 19-20 1.

Any congruence p on a cyclic semigroup C is determined uniquely
by its induced homomorphic image C’ a cyclic semigroup. We denote
p-p(n’, m’) where C’-(n’, m’) and

(1) apb if and only if ta--- b a b
m’ (a-- b) a >_n’, b >_n’.

Proposition 1. Let C---(n, m) be a cyclic semigroup p-p(n, m)
is a congruence on C if and only if n_n, m

Proposition 2. Let S, S. be cyclic semigroups such that
SS. and 1 generates S., k generates S. p-p(n, m)and
p.(n., m:) are congruences on S and S respectively with p-p. ]S
if and only if n._n and n-r_n-i where n=-r(modk), lgr_k,
and m-lcm (k, m.).

Definition 1. Let a, p be congurences on a groupoid G. Then
aVp is the smallest congruence containing a and p and a/p is the
largest congruence contained in a and p.

Since the identity relation is contained in all congruences and
the universal relation contains all congruences and intersection
preserves congruences for any congruences, a, p on a groupoid G
both aV p and aA p exist.

In [5 Tamura proved the following.
Proposition 3. Let C be a cyclic semigroup; let a-a(n, m),

p-p(n., m) be congruences on C then
(i) aV p-(min (n, n.), gcd (m, m))
(ii) aA p-(max (n, n.), lcm (m, m.)).


